
HED Resources
Release 0.0.1

HED Working Group

Jul 06, 2023

OVERVIEW:

1 What is HED? 3

2 How is HED used? 5

3 HED and BIDS 7

4 HED Tools 9

5 Where to begin? 11

6 History and Support 13
6.1 Introduction to HED . 13

6.1.1 Brief history of HED . 13
6.1.2 Goals of HED . 14
6.1.3 A basic HED annotation . 14
6.1.4 How to get started . 15

6.2 What’s new? . 15
6.3 How do you use HED? . 17

6.3.1 As an experimenter . 18
6.3.1.1 Planning and running an experiment . 18
6.3.1.2 Post-processing the event data . 19

6.3.2 As a data annotator . 20
6.3.2.1 Standardizing the format . 21
6.3.2.2 Adding HED annotations . 22
6.3.2.3 Checking correctness . 23

6.3.3 As a data analyst . 23
6.3.3.1 Understanding the data . 24
6.3.3.2 Preparing the data . 24
6.3.3.3 Analyzing the data . 24

6.3.4 As a tool developer . 25
6.3.4.1 Integration with existing tools . 26
6.3.4.2 The HED code base . 26
6.3.4.3 Future development plans . 27

6.3.5 As a schema builder . 27
6.3.5.1 Viewing available schemas . 28
6.3.5.2 Improving an existing schema . 28
6.3.5.3 Creating a new library schema . 28
6.3.5.4 Private vocabularies and extensions . 29

6.4 BIDS annotation quickstart . 29
6.4.1 How HED works in BIDS . 30

6.4.1.1 BIDS event files . 30

i

6.4.1.2 JSON event sidecars . 31
6.4.2 Create a JSON template . 32

6.4.2.1 Step 1: Select generate JSON . 33
6.4.2.2 Step 2: Upload an events file. 34
6.4.2.3 Step 3: Select columns to annotate . 35
6.4.2.4 Step 4: Download the template. 37
6.4.2.5 Step 5: Complete the annotation. 38

6.4.3 Spreadsheet templates . 39
6.4.3.1 Step 1: Select extract HED spreadsheet . 39
6.4.3.2 Step 2: Upload a sidecar and extract. 40
6.4.3.3 Step 3: Edit the spreadsheet . 41
6.4.3.4 Step 4: Merge the spreadsheet . 41

6.5 HED annotation quickstart . 43
6.5.1 What is HED annotation? . 43
6.5.2 A recipe for simple annotation . 43

6.6 HED validation guide . 46
6.6.1 What is HED validation? . 46
6.6.2 Types of errors . 47
6.6.3 Available validators . 47

6.6.3.1 Python validator . 47
6.6.3.2 JavaScript validator . 47
6.6.3.3 MATLAB support . 47

6.6.4 Validation strategies . 48
6.6.4.1 Validation in BIDS . 48
6.6.4.2 HED online validation . 49
6.6.4.3 Validation for MATLAB users . 50
6.6.4.4 Validation for Python users . 50

6.7 HED search guide . 52
6.7.1 HED search basics . 53

6.7.1.1 Calling syntax . 53
6.7.1.2 Single tag queries . 54
6.7.1.3 Logical queries . 55
6.7.1.4 Group queries . 55

6.7.2 Where can HED search be used? . 56
6.8 HED summary guide . 56

6.8.1 Column value summary . 57
6.8.2 HED tag summary . 58
6.8.3 Experimental design summary . 59

6.9 HED conditions and design matrices . 61
6.9.1 HED annotations for conditions . 61

6.9.1.1 Direct condition variables . 62
6.9.1.2 Defined condition variables . 64
6.9.1.3 Direct vs defined approaches . 65
6.9.1.4 Column vs row annotations . 65

6.9.2 Experimental design concepts . 69
6.9.2.1 Design matrices and factor variables . 70
6.9.2.2 Types of condition encoding . 70

6.10 File remodeling quickstart . 71
6.10.1 What is remodeling? . 71
6.10.2 The remodeling process . 74
6.10.3 JSON remodeling files . 74

6.10.3.1 Basic remodel operation syntax . 75
6.10.3.2 Applying multiple remodel operations . 75
6.10.3.3 More complex remodeling . 76

ii

6.10.3.4 Remodeling file locations . 78
6.10.4 Using the remodeling tools . 78

6.10.4.1 Online tools for debugging . 78
6.10.4.2 The command-line interface . 80
6.10.4.3 Jupyter notebooks for remodeling . 81

6.11 HED schema developer’s guide . 81
6.11.1 Setting up for schema development . 81
6.11.2 Design principles for schema . 82
6.11.3 Defining a schema . 82
6.11.4 Schema namespaces . 83
6.11.5 Attributes and classes . 83

6.11.5.1 Required sections . 83
6.11.5.2 Relation to base schema . 84
6.11.5.3 Schema properties . 84
6.11.5.4 Unit classes . 84
6.11.5.5 Value classes . 84
6.11.5.6 Schema attributes . 84
6.11.5.7 Syntax checking . 84
6.11.5.8 Procedure for updating a schema. 85

6.11.6 HED schema details . 85
6.11.7 Further documentation . 85

6.12 HED online tools . 85
6.12.1 Browser-based access . 86

6.12.1.1 Events files . 86
6.12.1.2 Sidecar files . 88
6.12.1.3 Spreadsheet files . 91
6.12.1.4 String online tools . 93
6.12.1.5 Schema online tools . 94

6.12.2 HED RESTful services . 95
6.12.2.1 Service setup . 95
6.12.2.2 Request format . 96
6.12.2.3 Service responses . 98

6.13 CTagger GUI tagging tool . 99
6.13.1 CTAGGER installation . 99

6.13.1.1 CTAGGER standalone installation . 99
6.13.1.2 CTAGGER in EEGLAB . 99

6.13.2 Loading BIDS event files . 99
6.13.3 Adding HED annotation . 101

6.13.3.1 Validating your annotation . 102
6.14 File remodeling tools . 103

6.14.1 Overview of remodeling . 104
6.14.1.1 Transformation operations . 104
6.14.1.2 Summarization operations . 105
6.14.1.3 Available operations . 105

6.14.2 Installing the remodel tools . 107
6.14.3 Remodel command-line interface . 108

6.14.3.1 Calling remodel tools . 108
6.14.3.2 Remodel command-line arguments . 108

6.14.4 Remodel scripts . 110
6.14.4.1 Backing up files . 110
6.14.4.2 Remodeling files . 112
6.14.4.3 Restoring files . 113

6.14.5 Remodel with HED . 114
6.14.5.1 Extracting HED information from BIDS . 114

iii

6.14.5.2 Directly specifying HED information . 114
6.14.6 Remodel error handling . 115

6.14.6.1 Errors in the remodel file . 115
6.14.6.2 Execution-time remodel errors . 115

6.14.7 Remodel sample files . 116
6.14.7.1 Sample remodel file . 116
6.14.7.2 Sample remodel event file . 116
6.14.7.3 Sample remodel sidecar file . 117

6.14.8 Remodel transformations . 118
6.14.8.1 Factor column . 118
6.14.8.2 Factor HED tags . 119
6.14.8.3 Factor HED type . 120
6.14.8.4 Merge consecutive . 122
6.14.8.5 Remap columns . 124
6.14.8.6 Remove columns . 126
6.14.8.7 Remove rows . 127
6.14.8.8 Rename columns . 128
6.14.8.9 Reorder columns . 129
6.14.8.10 Split rows . 130

6.14.9 Remodel summarizations . 132
6.14.9.1 Summarize column names . 133
6.14.9.2 Summarize column values . 134
6.14.9.3 Summarize definitions . 136
6.14.9.4 Summarize HED tags . 139
6.14.9.5 Summarize HED type . 142
6.14.9.6 Summarize HED validation . 143
6.14.9.7 Summarize sidecar from events . 145

6.14.10 Remodel implementation . 147
6.14.10.1 The PARAMS dictionary . 147
6.14.10.2 Operation class constructor . 148
6.14.10.3 The do_op implementation . 148
6.14.10.4 The do_op for summarization . 149
6.14.10.5 Additional requirements for summarization . 149

6.15 HED Python tools . 150
6.15.1 Jupyter notebooks for HED in BIDS . 150

6.15.1.1 Summarize BIDS event files . 150
6.15.1.2 Extract a JSON sidecar template . 151
6.15.1.3 JSON sidecar to spreadsheet . 151
6.15.1.4 Validate HED in a BIDS dataset . 152

6.15.2 Jupyter notebooks for data curation . 152
6.15.2.1 Consistency of BIDS event files . 152

6.15.3 Calling HED tools . 153
6.15.3.1 Getting a list of files . 153
6.15.3.2 Dictionaries of filenames . 153
6.15.3.3 Logging processing steps . 155

6.16 HED JavaScript tools . 156
6.16.1 Javascript tool installation . 156
6.16.2 Javascript package organization . 156
6.16.3 Javascript programmatic interface . 156

6.17 HED MATLAB tools . 157
6.17.1 HED services in MATLAB . 157

6.17.1.1 Overview of service requests . 158
6.17.1.2 Setting up a session from MATLAB . 158
6.17.1.3 Creating a request structure . 159

iv

6.17.1.4 Making a service request . 160
6.17.1.5 Decoding a service response . 160

6.17.2 EEGLAB plug-in integration . 161
6.17.2.1 Installing HEDTools . 161
6.17.2.2 Annotating datasets . 162
6.17.2.3 HED-based epoching . 166

6.17.3 Python HEDTools in MATLAB . 167
6.17.3.1 Getting started . 167
6.17.3.2 MATLAB wrappers for HEDTools . 170
6.17.3.3 MATLAB functions for Python . 171

6.18 HED schemas . 171
6.18.1 HED schema basics . 171

6.18.1.1 Tag forms . 172
6.18.1.2 Types of schemas . 172

6.18.2 Viewing schemas . 173
6.18.3 Available schemas . 173

6.18.3.1 The standard schema . 173
6.18.3.2 The SCORE library . 173
6.18.3.3 The LISA library . 173

6.19 HED test datasets . 174
6.19.1 eeg_ds002893s_hed . 175
6.19.2 eeg_ds003645s_hed . 175
6.19.3 eeg_ds003645s_hed_column . 175
6.19.4 eeg_ds003645s_hed_inheritance . 175
6.19.5 eeg_ds003645s_hed_library . 175
6.19.6 eeg_ds003645s_hed_longform . 175
6.19.7 eeg_ds004105s_hed . 175
6.19.8 eeg_ds004106s_hed . 176
6.19.9 eeg_ds004117s_hed_sternberg . 176
6.19.10 fmri_ds002790s_hed_aomic . 176
6.19.11 fmri_soccer21_hed . 176
6.19.12 BIDS validation . 176

7 Indices and tables 177

v

vi

HED Resources, Release 0.0.1

Links

• PDF docs

• Source code

OVERVIEW: 1

https://hed-examples.readthedocs.io/_/downloads/en/latest/pdf/
https://github.com/hed-standard/hed-examples/

HED Resources, Release 0.0.1

2 OVERVIEW:

CHAPTER

ONE

WHAT IS HED?

HED (‘Hierarchical Event Descriptors’, pronounced either as /hed/ or /H//E//D/) is a framework for using a controlled
yet extensible vocabulary to systematically describe experiment events of all types (perceptual, action, experiment
control, task . . .).

The goals of HED are to enable and support its users to store and share recorded data in a fully analysis-ready format,
and to support efficient (and/or extended cross-study) data search and analysis.

3

HED Resources, Release 0.0.1

4 Chapter 1. What is HED?

CHAPTER

TWO

HOW IS HED USED?

HED enables users to use a standard method to detail the nature of each experiment event, and to record information
about experiment organization, thus creating a permanent, both human- and machine-readable record embedded in
the data record for use in any further analysis, re-analysis, and meta/mega-analysis.

HED may be used to annotate any type of data – but particularly data acquired in functional brain imaging (EEG,
MEG, fNIRS, fMRI), multimodal (aka MoBI, mobile brain/body imaging), psychophysiological (ECG, EMG, GSR),
or purely behavioral experiments.

HED annotations are composed of comma-separated tags from a hierarchically-structured vocabulary called the HED
standard schema (possibly augmented by terms from one or more specialized HED library schemas).

HED library schemas for use in individual research subfields as well as the standard schema and vocabularies under
development are housed in the hed-schemas.

The HED working group is an ongoing open-source development organization whose mission is to extend and main-
tain the HED standard and associated tools. Visit the hed-standard site on GitHub for information on how to join the
HED community of users and developers.

5

https://www.hedtags.org/display_hed.html
https://www.hedtags.org/display_hed.html
https://github.com/
https://github.com/hed-standard

HED Resources, Release 0.0.1

6 Chapter 2. How is HED used?

CHAPTER

THREE

HED AND BIDS

HED was accepted (2019) into the top-level BIDS (Brain Imaging Data Structure) standard, thus becoming an integral
part of the BIDS data storage standards for an ever-increasing number of neuroimaging data modalities.

An efficient approach to integrating HED event descriptions into BIDS metadata has been demonstrated in this 2021
paper.

7

https://bids.neuroimaging.io/
https://www.sciencedirect.com/science/article/pii/S1053811921010387?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1053811921010387?via%3Dihub

HED Resources, Release 0.0.1

8 Chapter 3. HED and BIDS

CHAPTER

FOUR

HED TOOLS

Currently, tools using HED for data annotation, validation, search, and extraction are available for use online, or (as
MATLAB functions) within the EEGLAB environment running on Matlab.

9

https://hedtools.ucsd.edu/hed
https://sccn.ucsd.edu/eeglab/index.php

HED Resources, Release 0.0.1

10 Chapter 4. HED Tools

CHAPTER

FIVE

WHERE TO BEGIN?

To begin using HED tools to tag, search, and analyze data, browse the HED resources page. Visit the How can you use
HED? guide for information about how specific types of users can leverage HED.

11

https://www.hed-resources.org
HowCanYouUseHed.md
HowCanYouUseHed.md

HED Resources, Release 0.0.1

12 Chapter 5. Where to begin?

CHAPTER

SIX

HISTORY AND SUPPORT

HED (Gen 1, version < 4.0.0) was first proposed and developed by Nima Bigdely-Shamlo within the HeadIT project at
the Swartz Center for Computational Neuroscience (SCCN) of the University of California San Diego (UCSD) under
funding by The Swartz Foundation and by U.S. National Institutes of Health (NIH) grants R01-MH084819 (Makeig,
Grethe PIs) and R01-NS047293 (Makeig PI).

Further HED (Gen 2, 4.0.0 <= version < 8.0.0) development led by Kay Robbins of the University of Texas San
Antonio was funded by The Cognition and Neuroergonomics Collaborative Technology Alliance (CaN CTA) program
of U.S Army Research Laboratory (ARL) under Cooperative Agreement Number W911NF-10-2-0022.

HED (Gen 3, version >= 8.0.0) is now maintained and further developed by the HED Working Group led by Kay
Robbins and Scott Makeig with Dung Truong, Monique Denissen, Dora Hermes Miller, Tal Pal Attia, and Arnaud
Delorme, with funding from NIH grant RF1-MH126700.

HED is an open research community effort; others interested are invited to participate and contribute. Visit the HED
project homepage for links to the latest developments..

6.1 Introduction to HED

HED (an acronym for Hierarchical Event Descriptors) is an evolving framework and structured vocabulary for anno-
tating data, particularly data events to enable data search, extraction, and analysis. Specifically, the goal of HED is to
allow researchers to annotate what happened during an experiment, including experimental stimuli and other sensory
events, participant responses and actions, experimental design, the role of events in the task, and the temporal structure
of the experiment.

The resulting annotation is machine-actionable, meaning that it can be used as input to algorithms without manual
intervention. HED facilitates detailed comparisons of data across studies and promotes accurate interpretation of what
happened as an experiment unfolds.

6.1.1 Brief history of HED

HED was originally proposed by Nima Bigdely-Shamlo in 2010 to support annotation in HeadIT, an early public
repository for EEG data hosted by the Swartz Center for Computational Neuroscience, UCSD (Bigdely-Shamlo et al.
2013). HED has undergone several revisions and substantial infrastructure development since that time.

The BIDS (Brain Imaging Data Structure) standards group incorporated HED as annotation mechanism in 2019. In
2019, work also began on a rethinking of the HED vocabulary design, resulting in the release of the third generation
of HED in August 2021, representing a dramatic increase in annotation capacity and a significant simplification of the
user experience.

New in HED (versions 8.0.0+) released August 2021.

13

https://braininitiative.nih.gov/funded-awards/brain-initiative-hierarchical-event-descriptors-hed-system-characterize-events
https://github.com/hed-standard
https://github.com/hed-standard
https://headit.ucsd.edu
https://bids.neuroimaging.io/

HED Resources, Release 0.0.1

1. Improved vocabulary structure

2. Short-form annotation

3. Library schema

4. Definitions

5. Temporal scope

6. Encoding of experimental design

See the HED Specification and the documentation summary for additional details.

6.1.2 Goals of HED

Event annotation documents the things happening during data recording regardless of relevance to data analysis and
interpretation. Commonly recorded events in electrophysiological data collection include the initiation, termination,
or other features of sensory presentations and participant actions. Other events may be unplanned environmental
events (for example, sudden onset of noise and vibration from construction work unrelated to the experiment, or a
laboratory device malfunction), events recording changes in experiment control parameters as well as data feature
events and control mishap events that cause operation to fall outside of normal experiment parameters. The goals of
HED are to provide a standardized annotation and supporting infrastructure.

Goals of HED.

1. Document the exact nature of events (sensory, behavioral, environmental, and other) that occur during recorded
time series data in order to inform data analysis and interpretation.

2. Describe the design of the experiment including participant task(s).

3. Relate event occurrences both to the experiment design and to participant tasks and experience.

4. Provide basic infrastructure for building and using machine-actionable tools to systematically analyze data
associated with recorded events in and across data sets, studies, paradigms, and modalities.

Current systems in neuroimaging experiments do not record events beyond simple numerical (3) or text (Event type
Target) labels whose more complete and precise meanings are known only to the experimenter(s).

A central goal of HED is to enable building of archives of brain imaging data in a amenable to large scale analysis, both
within and across studies. Such event-related analysis requires that the nature(s) of the recorded events be specified in
a common language.

The HED project seeks to formalize the development of this language, to develop and distribute tools that maximize
its ease of use, and to inform new and existing researchers of its purpose and value.

6.1.3 A basic HED annotation

HED annotations are comma-separated lists of tags selected from a hierarchically-organized vocabulary.

A simple HED annotation of presentation of a face image stimulus.

Sensory-event, Experimental-stimulus, (Visual-presentation, (Image, Face, Hair)), (Image, Pathname/f032.bmp),
Condition-variable/Famous-face, Condition-variable/Immediate-repeat

14 Chapter 6. History and Support

https://hed-specification.readthedocs.io/en/latest/
https://www.hedtags.org/display_hed.html

HED Resources, Release 0.0.1

The annotation above is a very basic annotation of an event marker representing the presentation of a face image
with hair. The event marker represents an experimental stimulus with two experimental conditions Famous-face and
Immediate-repeat in effect.

Because HED has a structured vocabulary, other researchers use the same terms, making it easier to compare experi-
ments. Further, the HED infrastructure supports associating of these annotation strings with the actual event markers
during processing, allowing tools to locate event markers using experiment-independent strategies.

The annotation in the example uses the most basic strategy for annotating condition variables — just naming the different
conditions. However, even this simple strategy allows tools to distinguish among events taken under different task
conditions. HED also provides more advanced strategies that allow downstream tools to automatically extract dataset-
independent design matrices.

Every term in the HED structured vocabulary (HED schema) must be unique, allowing users to use a single word
for each annotation tag. Tools can expand into their full paths within the HED schema, allowing tools to leverage
hierarchical relationships during searching.

An equivalent long-form HED annotation of face image stimulus from above.

Event/Sensory-event,
Property/Task-property/Task-event-role/Experimental-stimulus,
(Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Man-made-object/Media/Visualization/Image,
Item/Biological-item/Anatomical-item/Body-part/Head/Face,
Item/Biological-item/Anatomical-item/Body-part/Head/Hair)),
(Item/Object/Man-made-object/Media/Visualization/Image,
Property/Informational-property/Metadata/Pathname/f032.bmp),
Property/Organizational-property/Condition-variable/Famous-face,
Property/Organizational-property/Condition-variable/Immediate-repeat

HED is also extensible, in that most nodes can be extended to include more specific terms. HED also permits library
schema, which are specialized vocabularies. HED tools support seamless annotations that include both terms from the
base schema and from specialized, discipline-specific vocabularies.

6.1.4 How to get started

The HED annotation quickstart provides a simple step-by-step guide to doing basic HED annotation, while the Bids
annotation quickstart introduces the various types of annotation that should be included in a BIDS (Brain Imaging
Data Structure) dataset. This tutorial also includes instructions for using the online tools to start the annotation
process.

6.2 What’s new?

July 5, 2023: HEDTools version 0.3.1 released

HEDTools version 0.3.1 has been released on PyPI.
See also hed-python on GitHub.
This patch includes improvement to models exception handling, minor bug fixes, and improvement of
format for JSON format of remodeling summaries.

June 20, 2023: HEDTools version 0.3.0 released

6.2. What’s new? 15

https://github.com/hed-standard/hed-schema-library
https://github.com/hed-standard/hed-schema-library
https://bids-specification.readthedocs.io/en/stable/
https://bids-specification.readthedocs.io/en/stable/
https://pypi.org/project/hedtools/
https://github.com/hed-standard/hed-python

HED Resources, Release 0.0.1

HEDTools version 0.3.0 has been released on PyPI.
See also hed-python on GitHub.
This version uses the new DataFrame implementation of the models for improved efficiency.

June 14, 2023: HED brain initiative meeting video poster online.

HED video poster available until June 2024:
HED: Annotation standards and software infrastructure to enable sharing of analysis-reading neuroimag-
ing and behavior data
Presented as part of the Brain Initiative Meeting 2023.

June 2, 2023: HED online tools have a new look.

The HED online tools at https://hedtools.ucsd.edu/hed have been redesigned and streamlined.

May 12, 2023: Version 3.2.0 of the HED specification released.

Version 3.2.0 of the HED specification introduces the Inset tag as well as partnered and rooted library
schemas. This version is the first to support the curly brace notation in sidecars.

April 28, 2023: HED standard schema v8.2.0 released.

The HED schema v8.2.0 has just been released. This release supports the Inset tag for annotating inter-
mediate points in an ongoing event as well as partnered library schemas.

April 25, 2023: HED playlist goes live on YouTube.

The Hierarchical Event Descriptor playlist is now available on YouTube. A 5-part short-course on HED
(from OHBM 2022) has just been released.

April 6, 2023: Version 3.1.0 of the HED specification released.

Version 3.1.0 of the HED specification clarifies existing features.

HED validators will be able to link error messages directly to descriptions in the spec.

April 3, 2023: New versions of HED schema browser available.

You can now use a single HED Schema Browser to view both standard and library schemas.

A prelease viewer is available for viewing all prerelease HED schemas.

March 28, 2023: Release of HED Javascript validator for BIDS v3.9.0 on npm

The new version supports checking of onsets and offsets.

March 27, 2023: HED Workshop at CNS 2023

Title: Recording what happened during your experiment using Hierarchical Event Descriptors (HED)
Presenter: Scott Makeig UCSD and assisted by members of the HED Working Group.
Time and location: 12:15-1:15 pm Seacliff Room Hyatt Regency San Francisco Hotel.

March 24, 2023: HED is now on Twitter

Follow us at @HedDescriptors

March 22-23, 2023: HED at the 2023 Annual Assembly of the Global Brain Consortium

Directions in EEG data-sharing - panel co-chaired by Kay Robbins and Dora Hermes
Program and Registration

Feb 28, 2023: INCF Software Highlight on HED

Title: HED, a practical system for describing an experiment using an analysis-ready framework
Presenter: Kay Robbins UTSA, member of the HED Working Group.
Abstract.

16 Chapter 6. History and Support

https://pypi.org/project/hedtools/
https://github.com/hed-standard/hed-python
https://brainmeeting2023.ipostersessions.com/?s=DA-51-73-83-1B-EA-B8-0A-CB-8F-41-BD-78-CD-68-D2
https://brainmeeting.swoogo.com/2023/begin?i=SChfLW2xODsF7JgaKhJT1nJAhf5QcbGi
https://hedtools.ucsd.edu/hed
https://doi.org/10.5281/zenodo.7869149
https://doi.org/10.5281/zenodo.7876037
https://www.youtube.com/playlist?list=PLeII6cRFsP6L5S6icwRrJp0DHkhOHtbp-
https://hed-specification.readthedocs.io/en/stable/
https://www.hedtags.org/display_hed.html
https://www.hedtags.org/display_hed_prerelease.html
https://sccn.ucsd.edu/~scott/
https://globalbrainconsortium.org/documents/GBC_March-2023_Agenda_Annual_Meeting.pdf
https://www.utsa.edu/sciences/computer-science/faculty/KayRobbins.html
https://ocns.github.io/SoftwareWG/2023/02/17/software-highlight-kay-robbins-hed.html

HED Resources, Release 0.0.1

February 22, 2023: HED YouTube Channel goes live

First video: HED Tagging 101
HED YouTube channel: https://www.youtube.com/@hedworkinggroup/videos

February 14, 2023: HEDTools 0.2.0 is released.

• This release includes the HED remodeling tools.

• Improved local caching and schema validation messages are included.

• This is the first release with distinct stable, master, and develop branches.

January 28, 2023: HED SCORE Library v1.0.0 released

The HED score library schema v1.0.0 has been officially released. This library is based on the Standardized
Computer-based Organized Reporting of EEG (SCORE) standard and adapted for annotation using the
HED infrastructure and requirements. For more information see the SCORE schema library guide.

January 20, 2023: New preprint available

Actionable event annotation and analysis in fMRI preprint Monique Denissen, Fabio Richlan, Jürgen
Birkibauer, Mateusz Pawlik, Anna Ravenschlag, Nicole Himmelstoß, Florian Hutzler, Kay Robbins Sup-
porting materials and data are available at https://osf.io/93km8/. Chapter to appear in the book Methods
for analyzing large neuroimaging datasets edited by Robert Whelan and Herve Lemaitre.

January 4, 2023: New preprint available

End-to-end processing of M/EEG data with BIDS, HED, and EEGLAB preprint Dung Truong,
Kay Robbins, Arnaud Delorme, and Scott Makeig Supporting materials and data are available at
https://osf.io/8brgv/. Chapter to appear in the book Methods for analyzing large neuroimaging datasets
edited by Robert Whelan and Herve Lemaitre.

January 3, 2023: Project page live

New HED organization homepage goes live at https://www.hedtags.org.

6.3 How do you use HED?

HED (Hierarchical Event Descriptors) annotations provide an essential link between experimental data and analysis.
HED annotations can be used to describe what happened while data was acquired, participant state, experimental
control, task parameters, and experimental conditions. HED annotations are most commonly associated with event
files, but these annotations can also be applied to other types of tabular data.

This guide organizes HED resources based on how you might use HED:

• As an experimenter

• As a data annotator

• As a data analyst

• As a tool developer

• As a schema builder

6.3. How do you use HED? 17

https://youtu.be/iRAWO-Fn6Bw
https://www.youtube.com/@hedworkinggroup/videos
https://pubmed.ncbi.nlm.nih.gov/28838815/
https://hed-schemas.readthedocs.io/en/latest/hed_score_library.html
https://osf.io/h7puk
https://osf.io/93km8/
https://osf.io/h7puk
https://osf.io/8brgv/
https://www.hedtags.org

HED Resources, Release 0.0.1

6.3.1 As an experimenter

. . . doing experiments and acquiring data:

The lynch-pin of scientific inquiry is the planning and running of experiments to test hypotheses and study behavior.
The focus of the discussion here is not explicitly on how an experiment should be designed, but rather on how data
should be recorded and transformed to maximize its downstream usability.

Here are some topics of interest to experimenters:

• Planning and running an experiment

• Post processing the data

The Actionable event annotation and analysis in fMRI: A practical guide to event handling preprint, which can be found
at https://osf.io/93km8/, provides concrete guidance and discussion of pitfalls in transforming experimental logs into
usable event data. The site includes sample data to use in running the examples.

6.3.1.1 Planning and running an experiment

Most laboratory experiments use neuroimaging equipment and peripheral devices in combination with experiment
control software to acquire the experimental data. This section describes some HED tools that may be of use during
the log-to-data extraction process. Key questions are:

• What should go into an experimental log?

• How should information about the experimental design and temporal structure be included?

• How will the log data be synchronized with other data?

We assume that event information is primarily contained in experimental logs, whose log entries contain a timestamp,
a code, and possibly other information. We assume that this information can be extracted in tabular format. The key
point here is:

Data that isn’t recorded is lost forever!

With that caveat in mind, most researchers will run a pilot before the actual experiment to detect issues that might
reduce the effectiveness or correctness of the experiment. HED file remodeling tools can help smooth the transition
from acquisition to data, both in the pilot and the experiment itself.

Event acquisition

In a traditional neuroimaging experiment that is organized by trial, it may be easy to focus exclusively on marking
the experimental stimuli, but the incidental sensory presentations can also be important, particularly for analyses that
use regression techniques. Examples of incidental sensory presentations include cues, instructions, feedback, and
experimental control events that are visible to the participant.

Participant responses should also be marked in the timeline, even though this may require synchronization of presenta-
tion with the acquisition of the participant’s response indicators. Downstream analysis may include time-locking to the
actual response point to study neural correlates of the motor reaction. A common approach for including participant’s
response is to identify the closing of a switch on a push-button, marking the end of the participant’s response. More
sophisticated instrumentation might include detection of initiation and termination of muscle movement using EMG
(electromyography) sensors.

Another issue which should be addressed in the pilot is how experimental control information will be embedded in
the data. Will there be embedded markers for trial or block beginnings? How will information about experimental
conditions be embedded? Often a condition will be counterbalanced within a run and embedding markers that identify
the current conditions in the log can facilitate the use of tools in post-processing and assure that the conditions are
correctly marked.

18 Chapter 6. History and Support

https://osf.io/93km8/

HED Resources, Release 0.0.1

Logs to event files

Although the HED tools do not yet directly support any particular experimental presentation/control software packages,
the HED File remodeling tools can be useful in working with logged data.

Assuming that you can put the information from your experimental log into a tabular form such as:

A sample log file in tabular form.

onset code description
0.3423 4332 Presentation of a fixation cross for 0.25 seconds.
0.5923 4333 Presentation of a face image for 0.5 seconds.
1.7000 4332 Presentation of a fixation cross for 0.25 seconds.
.

The summarize column values operation in the HED file remodeling tools compiles detailed summaries of the contents
of tabular files. Use the following remodeling file and your tabular log file as input to the HED online event remodeling
tools to quickly get an overview of its contents.

A sample JSON file with the command to get a summary of the column values in a file.

[{
"operation": "summarize_column_values",
"description": "Summarize the column values in my log.",
"parameters": {

"summary_name": "Log_summary",
"summary_filename": "Log_summary",
"skip_columns": ["onset"],
"value_columns": ["description"]

}
}]

6.3.1.2 Post-processing the event data

The information that first comes off the experimental logs is usually not directly usable for sharing and analysis. A
number of HED File remodeling tools tools might be helpful for restructuring your first pass at the event files.

The remap columns transformation is particularly useful during the initial processing of tabular log information as
exemplified by the following example

A sample JSON remodel to create duration and event_type columns from code.

[{
"operation": "remap_columns",
"description": "Expand the code column.",
"parameters": {

"source_columns": ["code"],
"destination_columns": ["duration", "event_type"],
"map_list": [["4332", 0.25, "show_cross"],

(continues on next page)

6.3. How do you use HED? 19

https://hedtools.ucsd.edu/hed_dev/events

HED Resources, Release 0.0.1

(continued from previous page)

["4333", 0.50, "show_face"]],
"ignore_missing": true

}
}]

The result of applying the above transformation to the sample tabular log file is shown in the following table:

Result of applying remap_columns to the sample tabular log file.

onset code description duration event_type
0.3423 4332 Presentation of a fixation cross for 0.25 seconds. 0.25 show_cross
0.5923 4333 Presentation of a face image for 0.5 seconds. 0.50 show_face
1.7000 4332 Presentation of a fixation cross for 0.25 seconds. 0.25 show_cross
.

The remapping transformation retains all the columns. At this point you can delete and/or reorder columns using
other remodeling commands, since BIDS requires that the first two columns in all events files be onset and duration,
respectively. The remodeling JSON file can be expanded to include these transformations as well.

6.3.2 As a data annotator

. . . organizing data and tagging events:

The move towards open, reproducible science, both in the scientific community and by funding agencies, makes data
sharing a requirement. An added benefit, is that data used by others is likely to garner increased recognition and
additional citations. This section emphasizes the importance of complete and accurate metadata to enable analysis.

Here are some topics of interest to data annotators:

• Standardizing the format

– Learning about BIDS

– Learning about HED

– Integrating HED in BIDS

• Adding HED annotations

– Viewing available tags

– Basic annotation strategies

– More advanced annotations

• Checking correctness

– Validating HED annotations

– Checking for consistency

20 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.3.2.1 Standardizing the format

An important aspect of data-sharing is putting your data into a standardized format so that tools can read and manipulate
the data without the need for special-purpose reformatting code.

BIDS (Brain Imaging data Structure) is a widely used data organization standard for neuroimaging data. HED is
well-integrated into the BIDS standard.

Learning about BIDS

• If you are unfamiliar with BIDS, we recommend the BIDS Start Kit.

• Folders and Files gives an overview of how files in a BIDS dataset are organized.

• The Annotating a BIDS dataset tutorial gives an overview of how to get the appropriate metadata into a BIDS
dataset.

• See the BIDS specification for detailed information on the rules for BIDS. Of special interest to HED annotators
are the sections on Task events and the Hierarchical Event Descriptors appendix.

• There are a variety of tools available to convert to and from BIDS format as summarized in Software currently
supporting BIDS.

Learning about HED

• The HED introduction gives a basic overview of HED’s history and goals.

• The “Capturing the nature of events. . . ” paper works through a practical example of using HED annotations
and suggests best practices for annotation.

• See the HED specification for detailed information on the rules for HED. Of special interest to HED users are
Chapter 4: Basic annotation and Chapter 5: Advanced annotation. These chapters explain the different
types of HED annotations and the rules for using them.

Integrating HED in BIDS

There are two strategies for incorporating HED annotations in a BIDS dataset:

Method 1: Use a JSON (sidecar) file to hold the annotations.

Method 2: Annotate each line in each event file using the HED column.

Method 1 is the typical way that HED annotations are incorporated into a BIDS dataset. The HED online tools allow
you to easily generate a template JSON sidecar to fill in. The BIDS annotation quickstart walks through this process
step-by-step.

Method 2 is usually used for instrument-generated annotations or for manual processing (such as users marking bad
sections of the data or special features). In both cases the annotations are usually created using special-purpose tools.

When using HED you must provide a HED schema version indicating the HED vocabulary you are using. In BIDS,
the schema versions are specified in dataset_description.json, a required JSON file that must be placed in the
root directory of the dataset. See HED schema versions in the BIDS specification for examples.

6.3. How do you use HED? 21

https://bids.neuroimaging.io/
https://bids-standard.github.io/bids-starter-kit/index.html
https://bids-standard.github.io/bids-starter-kit/folders_and_files/folders.html
https://bids-standard.github.io/bids-starter-kit/tutorials/annotation.html
https://bids-specification.readthedocs.io/en/stable/
https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/05-task-events.html
https://bids-specification.readthedocs.io/en/stable/appendices/hed.html
https://bids.neuroimaging.io/benefits.html#software-currently-supporting-bids
https://bids.neuroimaging.io/benefits.html#software-currently-supporting-bids
https://www.hed-resources.org/en/latest/HedIntroduction.html
https://www.sciencedirect.com/science/article/pii/S1053811921010387
https://hed-specification.readthedocs.io/en/latest/05_Advanced_annotation.html
https://hed-specification.readthedocs.io/en/latest/04_Basic_annotation.html
https://hed-specification.readthedocs.io/en/latest/05_Advanced_annotation.html
https://hedtools.ucsd.edu/hed
https://www.hed-resources.org/en/latest/BidsAnnotationQuickstart.html
https://bids-specification.readthedocs.io/en/stable/appendices/hed.html#hed-schema-versions

HED Resources, Release 0.0.1

6.3.2.2 Adding HED annotations

This section discusses the strategy for adding annotations in a BIDS dataset using sidecars. The discussion assumes
that you have a JSON sidecar template file ready to annotate. See BIDS annotation quickstart for a walk-through of
this process.

Viewing available tags

• The HED vocabulary is hierarchically organized as shown in this expandable view of the HED standard vocab-
ulary.

• Schema viewers gives links to different versions of the HED standard HED vocabularies as well as library
vocabularies.

Basic annotation strategies

HED annotations come in variety of levels and complexity. If your HED annotations are in a JSON sidecar, it is easy
to start simple and incrementally improve your annotations just by editing the JSON sidecar.

• The HED annotation quickstart provides a recipe for creating a simple HED annotation.

A key part of the annotation is to include a good description of each type event. One way to do this is to include a
Description/ tag with a text value as part of each annotation. A good description helps to clarify the information that
you want to convey in the tags.

• Viewing available tags gives options for viewing tags to select.

• CTAGGER is a standalone tagging assistant with a user-friendly GUI to ease the tagging process.

More advanced annotations

HED supports a number of advanced annotation concepts which are necessary for a complete description of the exper-
iment.

• HED definitions: allow users to define complex concepts. See HED definitions for an overview and syntax.

• Temporal scope: annotate event processes that extend over time and provide a context for events. Expression
of temporal scope is enabled by Temporal-marker tags: Onset, Offset, and Duration together with the Definition
tag. See Temporal scope for the rules and usage.

• Conditions and experimental design: HED allows users to express annotate experiment design, as well as
other information such as task, and the experiment’s temporal organization. See HED conditions and design
matrices.

The Advanced annotation) chapter of the HED specification explains the rules for using these more advanced concepts.

22 Chapter 6. History and Support

https://www.hed-resources.org/en/latest/BidsAnnotationQuickstart.html
https://www.hedtags.org/display_hed.html
https://www.hed-resources.org/en/latest/HedSchemaViewers.html
https://www.hed-resources.org/en/latest/HedAnnotationQuickstart.html
https://www.hed-resources.org/en/latest/CTaggerGuiTaggingTool.html
https://hed-specification.readthedocs.io/en/latest/05_Advanced_annotation.html#hed-definitions
https://hed-specification.readthedocs.io/en/latest/05_Advanced_annotation.html#temporal-scope
https://www.hed-resources.org/en/latest/HedConditionsAndDesignMatrices.html
https://www.hed-resources.org/en/latest/HedConditionsAndDesignMatrices.html
https://hed-specification.readthedocs.io/en/latest/05_Advanced_annotation.html

HED Resources, Release 0.0.1

6.3.2.3 Checking correctness

Checking for errors is an ongoing and iterative process. It is much easier to build more complex annotations on a
foundation of valid annotations. Thus, as you are adding HED annotations, you should frequently revalidate.

Validating HED annotations

• The HED validation guide describes the different types of validators available.

• The HED errors documentation lists the different types of HED errors and their potential causes.

• The JSON sidecar, which usually contains most of the HED annotations, can be easily validated using the HED
online tools.

• You should validate the HED annotations separately using the online tools or the HED Python tools before doing
a full BIDS validation, as this will make the validation process much simpler.

Checking for consistency

Several HED summary tools allow you to check consistency. The Understanding the data tutorial in the next section
describes some tools that are available to help check the contents of the events files for surprises.

The summary tools are a start, but there are also experiment-specific aspects which ideally should be checked. Bad
trial identification is a typical example of experiment-specific checking.

Example of experiment-specific checking.

Suppose each trial in an experiment should consist of a sequence:

stimulus–>key-press–>feedback

You can expect that there will be situations in which participants forget to press the key, press the wrong key, press the
key multiple times, or press the key both before and after the feedback.

Ideally, a data annotator would provide information in the event file marking unusual things such as these bad trials,
since it is easy for downstream users to improperly handle these situations, reducing the accuracy of analysis.

At this time, your only option is to do manual checks or write custom code to detect these types of experiment-specific
inconsistencies. However, work is underway to include some standard types of checks in the HED File remodeling
tools in future releases.

You may also want to reorganize the event files using the remodeling tools. See the Remap columns a discussion above
and links to examples of how to reorganize the information in the columns of the event files.

6.3.3 As a data analyst

. . . applying HED tools to answer scientific questions:

Whether you are analyzing your own data or using shared data produced by others to answer a scientific question, fully
understanding the data and its limitations is essential for accurate and reproducible analysis. This section discusses
how HED annotations and tools can be used for effective analysis.

Here are some topics of interest to data analysts:

• Understanding the data

• Preparing the data

6.3. How do you use HED? 23

https://www.hed-resources.org/en/latest/HedValidationGuide.html
https://hed-specification.readthedocs.io/en/latest/Appendix_B.html
https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

• Analyzing the data

– Factors vectors and selection

– HED analysis in EEGLAB

6.3.3.1 Understanding the data

Sadly, most currently shared data is under-annotated and may require considerable work and possibly contact with the
data authors for correct use and interpretation.

You can get a preliminary sense about what is actually in the data by downloading a single event file (e.g., a BIDS
_events.tsv) and its associated JSON sidecar (e.g., a BIDS _events.json) and creating HED remodeling tool
summaries using the HED online tools for debugging. Summaries of particular use for analysts include:

• The column value summary compiles a summary of the values in the various columns of the event files in the
dataset. This summary does not require any HED information.

• The HED tag summary creates a summary of the HED tags used to annotate the data.

• The experimental design summary gives a summary of the condition variables or other structural tags relating
to experimental design, task, or temporal layout of the experiment.

While HED tag summary and the experimental design summaries require that the dataset have HED annotations, these
summaries do not rely on the experiment-specific event-coding used in each experiment and can be used to compare
information for different datasets.

The File remodeling quickstart tutorial gives an overview of the remodeling tools and how to use them. More detailed
information can be found in File remodeling tools.

The Online tools for debugging shows how to use remodeling tools to obtain these summaries without writing any
code.

The HED conditions and design matrices guide explains how information structure information is encoded in HED
and how to interpret the summaries of this information.

6.3.3.2 Preparing the data

In deciding on an analysis, you may discover that the information in the event files is not organized in a way that would
support your analyses.

6.3.3.3 Analyzing the data

The power of HED is two-fold – its flexibility and its generality in specifying criteria. Flexibility allows users to specify
quite complex criteria without having to write additional code, while generality allows comparison of criteria across
different experiments.

The factor generation as described in the next section relies on the HED File remodeling tools. See File remodeling
tools.

24 Chapter 6. History and Support

HED Resources, Release 0.0.1

Factor vectors and selection

The most common analysis application is to select events satisfying a particular criteria, and compare some measure
on signals containing these events with a control. Depending on the modality, these might be different.

HED annotations facilitate the selection. This selection can be described in terms of factor vectors. A factor vector
for an event file has the same number of rows as the event file (each row corresponding to an event marker). Factor
vectors contain 1’s for rows in which a specified criterion is satisfied and 0’s otherwise.

• The factor column operation creates factor vectors based on the unique values in specified columns. This factor
operation does not require any HED information.

• The factor HED tags creates factor vectors based on a HED tag query. The HED search guide explains the HED
query structure and available search options.

• The factor HED type creates factors based on a HED tag representing structural information about the data such
as Condition-variable (for experimental design and experimental conditions) or Task.

HED analysis in EEGLAB

EEGLAB, the interactive MATLAB toolbox for EEG/MEG analysis, supports HED through the EEGLAB HEDTools
plugin.

The End-to-end processing of EEG with HED and EEGLAB preprint, which can be found at https://osf.io/8brgv/,
works through the entire analysis process, including porting the analysis to high performance computing platforms.
The site includes sample data to use in running the examples.

HED support in other tools

Work is underway to integrate HED support in other analysis packages. If you are interested in helping in this effort
please email hed.maintainers@gmail.com.

6.3.4 As a tool developer

. . . helping expand the growing HED tool base:

The power of HED is its ability to capture important details of the experiment design and events in a form that is
both human-understandable and directly usable in processing programs. The HED ecosystem relies on tools that read,
understand, and incorporate HED as part of analysis. This section describes how, as a tool developer, you can contribute
to this growing ecosystem to support HED for processing and analysis.

Here are some topics of interest to developers:

• Integrating with existing tools

• The HED code base

– The HED Python code base

– The HED JavaScript code base

– The HED MATLAB code base

– Web tools and REST services

• Future development plans

6.3. How do you use HED? 25

https://sccn.ucsd.edu/eeglab/index.php
https://osf.io/8brgv/

HED Resources, Release 0.0.1

6.3.4.1 Integration with existing tools

The GitHub repositories and other resources associated with these projects are described in this section. The HED
project page is https://hedtags.org. The documentation and examples are housed in the hed-examples GitHub repos-
itory.

Contributions are welcome in any area (e.g., code, examples, documentation, ideas, issues). Use the issues mechanism
of the most appropriate HED standard repository to ask questions or to describe your ideas and how you would like to
contribute. Alternatively, you can email hed.maintainers@gmail.com.

6.3.4.2 The HED code base

The HED standard organization has several code projects and distinct tool bases in Python, MATLAB, and
JavaScript. All HED efforts are open source.

The HED python code base

The Python HED tools contain the core technology for HED including code for validation, analysis, and schema de-
velopment. The code for HEDTools is in the hed-python GitHub repository.

The latest stable release is available as hedtools on PyPI and can be installed using the regular pip install mechanism.

The develop branch of hed-python contains the latest versions of the tools and can be installed from GitHub using:

pip install git+https://github.com/hed-standard/hed-python/@develop

The HED JavaScript code base

GitHub repository. The JavaScript tools focus on HED validation and its main client is the Bids validator. The code
for this project is in the hed-javascript

The latest stable release is available as the hed-validator on npm.

The HED MATLAB code base

The MATLAB HED tools project focuses primarily on analysis using HED, although there is substantial support for
annotation as well.

The HEDTools plugin is available for installation through EEGLAB. TheEEGLAB plug-in integration tutorial ex-
plains the installation and integration of HED tools in the EEGLAB environment. Although this toolset focuses on
analysis, it also includes extensive tools for importing and annotating HED data through the CTagger GUI.

CTagger is a GUI for HED annotation and validation. CTagger can be run as a standalone program, but is also
integrated and callable from MATLAB via an EEGLAB plug-in. See CTAGGER GUI tagging tool tutorial for more
information on installation and use. The project source code is located in the CTagger GitHub repository.

HED services in MATLAB explains how the HED online services can be called programmatically in MATLAB. The
HED services are deployed online through a docker container as described in Web tools and rest services.

Python HEDTools in MATLAB explains how to install and call various Python tools from MATLAB.

26 Chapter 6. History and Support

https://hedtags.org
https://github.com/hed-standard/hed-examples
https://github.com/hed-standard
https://github.com/hed-standard/hed-python
https://pypi.org/project/hedtools/
https://github.com/hed-python
https://github.com/bids-standard/bids-javascript
https://github.com/hed-standard/hed-javascript
https://www.npmjs.com/package/hed-validator
https://sccn.ucsd.edu/eeglab/index.php
https://www.hed-resources.org/en/latest/HedMatlabTools.html#eeglab-plug-in-integration
https://www.hed-resources.org/en/latest/HedMatlabTools.html#eeglab-plug-in-integration
https://www.hed-resources.org/en/latest/CTaggerGuiTaggingTool.html
https://github.com/hed-standard/ctagger
https://www.hed-resources.org/en/latest/HedMatlabTools.html#hed-services-in-matlab
https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

Web tools and REST services

The HED online tools are available at https://hedtools.ucsd.edu/hed.

A development version of the online tools is available at https://hedtools.ucsd.edu/hed_dev.

These servers not only provide a GUI interface to the tools that is useful for debugging or for a quick analysis, but they
also provide REST services for various HED tools as described in HED RESTful services.

The project source code is located in the hed-web GitHub repository.

6.3.4.3 Future development plans

We are always looking for people with suggestions or new ideas to join our community. In the short term we have the
following development goals:

• Finish integration of search for epoching and its documentation in fieldtrip.

• Integrate searching, summary, and epoching into MNE-Python.

• Integrate search and summary into the Nemar and EEGNET platforms.

Longer term we hope to develop more sophisticated analysis methods based on HED and to better integrate presentation
and experimental control software with the annotation process.

We are also tackling the problem of how to effectively capture event relationships to facilitate more complex and
sophisticated automated analysis.

6.3.5 As a schema builder

. . . extending HED vocabulary in new directions:

HED annotations consist of comma-separated terms drawn from a hierarchically structured vocabulary called a HED
schema. The HED standard schema contains basic terms that are common across most human neuroimaging, behav-
ioral, and physiological experiments.

The HED ecosystem also includes HED library schemas to expand the HED vocabulary in a scalable manner to
support more specialized data.

Here are some topics of interest to schema developers:

• Viewing available schemas

• Improving an existing schema

• Creating a new library schema

• Private vocabularies and extensions

The SCORE library for clinical EEG annotations has been released. Other schema libraries are under development
include a movie annotation library and a language annotation library, but these have not yet reached the stage that they
are available for community comment.

If you are interested in participating in the development of any ongoing library development efforts, please email
hed.maintainers@gmail.com.

6.3. How do you use HED? 27

https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed_dev
https://github.com/hed-standard/hed-web
https://www.fieldtriptoolbox.org/
https://mne.tools/stable/index.html
https://nemar.org
http://eegnet.org/

HED Resources, Release 0.0.1

6.3.5.1 Viewing available schemas

The first step in using or improving the HED vocabularies is to explore what is there using the HED vocabulary viewer
for the HED standard schema.

The SCORE library for clinical annotation of EEG can be viewed using the HED vocabulary viewer for score.

6.3.5.2 Improving an existing schema

If you see a need for additional terms in an existing schema, post an issue to schema to hed-schemas/issues on GitHub
with the following information:

Proposing a new tag in an existing HED schema.

Be sure to include the following when posting an issue to add a schema term.

• The name of the schema (standard or library-name).

• The proposed name of the term or the name of term to be modified.

• A brief and informative text description of its meaning.

• A suggestion for where term should be placed in the schema if new.

• An explanation of why this term is needed and how it might be used.

Proposals for modifications to existing terms should include similar information.

The posting of an issue will start the discussion going. A HED schema term must stand on its own and must not
exist elsewhere in the schema. When thinking about where a term should be located within the schema hierarchy, also
remember that every term satisfies the is-a relationship with any of its schema parents.

Besides adding new terms, you might suggest improvements to an existing term’s description or a modification of its
attributes. You might also suggest the need for modifications or additions to the schema attributes, value classes, or
unit classes.

All suggested changes or errors should be reported using the same mechanism as proposing new terms through the
hed-schemas/issues mechanism on GitHub.

6.3.5.3 Creating a new library schema

If you are interested in developing a library schema in a new area, you should post an issue on the hed-schemas/issues
GitHub repository. Your post should start with a brief description of the proposed library and its applications.

Starting the process of developing a new HED schema library.

Be sure to include the following for your initial post proposing creation of a new library.

• A proposed name for the HED library schema.

• A brief description of the library’s purpose and contents.

• GitHub handles for potential collaborators.

You should also read the HED schema development guide to get an overview of the development process.

Note: You must have a GitHub account in order to work on the development of a new schema as all development
processes for HED use the GitHub Pull Request mechanism for development and community comment.

28 Chapter 6. History and Support

https://www.hedtags.org/display_hed.html
https://www.hedtags.org/display_hed.html?schema=score
https://github.com/hed-standard/hed-schemas/issues
https://github.com/hed-standard/hed-schemas/issues
https://github.com/hed-standard/hed-schemas/issues
https://www.hed-resources.org/en/latest/HedSchemaDevelopmentGuide.html

HED Resources, Release 0.0.1

6.3.5.4 Private vocabularies and extensions

Although you can create a private HED vocabulary for your own use, many HED tools assume that only standardized
schemas available on the hed-schemas GitHub repository will be used. These tools fetch or internally cache the most
recent versions of the HED schemas, and users need only specify the HED schema versions during validation and
analysis.

The decision to only support standardized schemas was after serious deliberation by the HED Working Group based
on the observation that the ability of HED to enable standardized dataset summaries and comparisons would be com-
promised by allowing unvetted, private vocabularies.

6.4 BIDS annotation quickstart

This tutorial provides a step-by-step guide to creating a JSON sidecar containing the annotations needed to document
your BIDs dataset events. See HED annotation quickstart for guidelines on what annotations to choose.

We assume that your dataset is already in the BIDS BIDS Brain Imaging Data Structure format and focus on the
mechanics of event annotation in BIDS using HED.

General strategy for machine-actionable annotation using HED.

The goal is to construct a single events.json sidecar file with all the annotations needed for users to understand
and analyze your data.

You will put the finished annotation file at the top level of your dataset.

The approach that we will use is to create a template file from an events.tsv file in your BIDS dataset using the
online tools available at hedtools.ucsd.edu/hed.

You can then edit this JSON file directly using a text editor to insert data descriptions and HED annotations.

You also have the option of converting this JSON template to a spreadsheet template for editing convenience as de-
scribed below in Spreadsheet templates.

Warning: Although the HED web tools base the template on the information extracted from a single events.tsv
file, this will be sufficient to produce a good template for most datasets.

For datasets with widely-varying event files, you should use the bids_validate_hed.ipynb Jupyter notebook version
rather than the online tools. The Jupyter notebook consolidates information from all of the events.tsv files in the
dataset to produce a comprehensive JSON sidecar template.

The examples in this tutorial use an abbreviated version of the events.tsvfile from subject 002 run 1 from
ds003645:Face processing MEEG dataset with HED annotation dataset on OpenNeuro. A reduced version of this
dataset eeg_ds003645s_hed is also available.

6.4. BIDS annotation quickstart 29

https://github.com/hed-standard/hed-schemas
https://bids-specification.readthedocs.io/en/stable/
https://hedtools.ucsd.edu/hed
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_processing/bids_generate_sidecar.ipynb
https://raw.githubusercontent.com/hed-standard/hed-examples/main/datasets/eeg_ds003645s_hed/sub-002/eeg/sub-002_task-FacePerception_run-1_events.tsv
https://openneuro.org/datasets/ds003645/versions/2.0.0
https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed

HED Resources, Release 0.0.1

6.4.1 How HED works in BIDS

Before getting into the details of event annotation, we briefly explain how BIDS represents events.

6.4.1.1 BIDS event files

BIDS events are time markers with associated metadata stored in tabular form in events.tsv files. Each events.tsv
file is associated with a particular data recording file by its filename using the BIDS naming scheme and by its location
within the BIDS dataset directory tree.

For example, the file sub_002_task-FacePerception-run-1_events.tsv gives event markers relative to the EEG
data file sub_002_task-FacePerception-run-1_eeg.set located in the same directory because the file names
match up to the last underbar.

The following is an excerpt of a BIDS events file showing its tabular structure.

A simplified excerpt from a BIDS events file.

onset dura-
tion

sam-
ple

event_type face_type rep_status trial rep_lag value stim_file

0.004 n/a 1 setup_right_sym n/a n/a n/a n/a 3 n/a
24.2098 n/a 6052 show_face unfamil-

iar_face
first_show 1 n/a 13 u032.bmp

25.0353 n/a 6259 show_circle n/a n/a 1 n/a 0 cir-
cle.bmp

25.158 n/a 6290 left_press n/a n/a 1 n/a 256 n/a
. . .

BIDS requires that all events.tsv files have an onset column containing the time (in seconds) of the event relative
to the start of the data recording to which it is linked.

BIDS also requires a duration column giving the duration in seconds of the event associated with this event marker.

BIDS uses n/a to designate values that should be ignored.

The BIDS specification also mentions several optional columns, but validation of appropriate use is not done by the
BIDS validator.

The exception is the optional HED column, which is used for event-specific annotations and verified with the BIDS
validator.

Users are also free to add their own columns to any events.tsv file. This flexibility in the format of the events.tsv
files is necessary to accommodate the variety of possible events across the spectrum of BIDS datasets, but it complicates
data handling for downstream users, who won’t know the meaning of these events.

Luckily, BIDS provides a mechanism for describing events in a machine-understandable, validated format using JSON
sidecars and HED (Hierarchical Event Descriptors).

30 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.4.1.2 JSON event sidecars

The BIDS events.json files provide the BIDS mechanism for machine-actionable event processing, meaning that
downstream users can analyze the data with appropriate tools without writing a lot of code.

Here is an excerpt from a BIDS events.json sidecar that is associated with the above events.tsv excerpt.

{
"event_type": {

"Description": "The main category of the event.",
"HED": {

"setup_right_sym": "Experiment-structure, Condition-variable/Right-key-
→˓assignment",

"show_face": "Sensory-event, Experimental-stimulus, Visual-presentation,␣
→˓Image, Face",

"left_press": "Agent-action, Participant-response, (Press, Keyboard-key)",
"show_circle": "Sensory-event, (White, Circle), (Intended-effect, Cue)"

},
"Levels": {

"setup_right_sym": "Right index finger key press means above average␣
→˓symmetry.",

"show_face": "Display a stimulus face image.",
"left_press": "Participant presses a key with left index finger.",
"show_circle": "Display a white circle on black background."

}
},
"face_type": {

"Description": "Factor indicating type of face image being displayed.",
"Levels": {
"famous_face": "A face that should be recognized by the participants.",
"unfamiliar_face": "A face that should not be recognized by the participants.",
"scrambled_face": "A scrambled face image generated by taking face image 2D␣

→˓FFT."
},
"HED": {

"famous_face": "(Condition-variable/Famous-face, (Image, (Face, Famous)))",
"unfamiliar_face": "(Condition-variable/Unfamiliar-face, (Image, (Face,␣

→˓Unfamiliar)))",
"scrambled_face": "(Condition-variable/Scrambled-face, (Image, (Face,␣

→˓Disordered)))"
}

},
"stim_file": {

"Description": "Filename of the presented stimulus image.",
"HED": "(Image, Pathname/#)"

}
}

The JSON sidecar is a dictionary, where the keys correspond to column names.

In the above example, we have provided annotations for the columns event_type, face_type, and stim_file. The
values corresponding to these keys are dictionaries of relevant metadata about the corresponding columns.

Several columns in the events.tsv file do not have keys in the JSON sidecar (onset, duration, sample,
rep_status, trial, rep_lag, value) because we have chosen not to provide information about these columns.

6.4. BIDS annotation quickstart 31

HED Resources, Release 0.0.1

The Description fields provide information about the general meanings of the corresponding columns.

The Levels fields provide information about individual categorical values within a column in a human-readable form.

The HED sidecar fields contain descriptive tags from a controlled vocabulary, which can be read and processed by
computer algorithms.

At analysis time, tools are available to assemble the HED annotations for each event.

For example the relevant HED tags for the second event in the excerpted event file are:

show_face: Sensory-event, Experimental-stimulus, Visual-presentation, Image, Face
unfamiliar_face: (Condition-variable/Unfamiliar-face, (Image, (Face, Unfamiliar)))
stim_file: (Image, Pathname/#)

The stim_file column has been annotated as a value column rather a categorical column, so the HED tags corre-
sponding to that column are assembled by substituting the actual column value in the events.tsv file for the # tag
placeholder. HED tools can assemble the complete annotation for each event from the event file and its accompanying
JSON sidecar.

Final assembled HED tags for second event in the excerpted event file.

Sensory-event, Experimental-stimulus, Visual-presentation, Image, Face,
(Condition-variable/Unfamiliar-face, (Image, (Face, Unfamiliar))),
(Image, Pathname/u032.bmp)

The standardized HED vocabulary allows tools to search for events with common tags across datasets.

We recommend that when at all possible, you place your HED annotations in a single JSON sidecar file located in the
root directory of your BIDS dataset.

Do not use the HED column in the individual events.tsv unless you really need to annotate events individually,
because individual event annotation is a lot more work and harder to maintain.

The next section guides you through the creation of a JSON sidecar for event annotation using convenient online tools.

The Basic HED Annotation tutorial walks you through the process of selecting HED tags for annotation.

6.4.2 Create a JSON template

As described in the previous section, users provide metadata about events in a JSON sidecar. This tutorial demonstrates
how to use online tools to generate a JSON sidecar template by extracting information from one of the events.tsv
files in your BIDS dataset. Once the skeleton of the JSON sidecar is in place, and you just need to edit in your specific
metadata.

Working from a template is much easier and faster than creating a sidecar from scratch. Using the HED events online
tools, the steps to create a template are:

• Step 1: Select generate JSON.

• Step 2: Upload an event file.

• Step 3: Select columns to annotate.

• Step 4: Download the extracted template.

• Step 5: Complete the annotation.

You can then edit your JSON sidecar directly or convert it to a spreadsheet to fill in the annotations.

32 Chapter 6. History and Support

https://hedtools.ucsd.edu/hed/events
https://hedtools.ucsd.edu/hed/events

HED Resources, Release 0.0.1

6.4.2.1 Step 1: Select generate JSON

Go to the Events page of the HED online tools. You will see the following menu:

Select Generate sidecar template. The application will adjust to your selection, showing only the information you
need to provide.

6.4. BIDS annotation quickstart 33

https://hedtools.ucsd.edu/hed/events

HED Resources, Release 0.0.1

6.4.2.2 Step 2: Upload an events file.

Use the Browse button to choose an events.tsv file to upload. When the upload is complete, the local file name of
the uploaded events file will be displayed next to the Browse button.

In this example, we have uploaded sub-002_task-FacePerception_run-1_events.tsv. Here is a simplified excerpt from
the beginning of this file:

A simplified excerpt from a BIDS event file.

onset dura-
tion

sam-
ple

event_type face_type rep_status trial rep_lag value stim_file

0.004 n/a 1.0 setup_right_sym n/a n/a n/a n/a 3 n/a
24.2098 n/a 6052 show_face unfamil-

iar_face
first_show 1 n/a 13 u032.bmp

25.0353 n/a 6259 show_circle n/a n/a 1 n/a 0 cir-
cle.bmp

25.158 n/a 6290 left_press n/a n/a 1 n/a 256 n/a
. . .

When the upload is complete, the application will expand to show the columns present in the uploaded events.tsv
file.

34 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.4.2.3 Step 3: Select columns to annotate

Annotations consist of descriptions of the values in the events.tsv file as well as associated HED tags that allow
computer tools to directly process these.

You will use the summary information provided about the columns in the events.tsv file to decide which columns
should be annotated.

The checkboxes on the left indicate which columns should be included in the JSON sidecar annotation template.

The checkboxes on the right indicate which event file columns contain values that you wish to annotate individually.
We refer to these columns as the categorical columns.

The numbers in parentheses next to the column names give the number of unique values in each column. You will not
want to treat columns with a large number of unique values as categorical columns, since you will need to provide an
individual annotation for each value in such a categorical column.

6.4. BIDS annotation quickstart 35

HED Resources, Release 0.0.1

36 Chapter 6. History and Support

HED Resources, Release 0.0.1

In the example, we have selected 7 columns to annotate. We omitted the onset, duration, and sample columns, since
these columns have standardized meanings. The duration column has only 1 unique value because this particular
dataset has n/a for all entries.

We have selected the event_type, face_type, and rep_status columns as categorical columns, meaning that
we will annotate each unique value in these columns in a separate annotation. The event_type, face_type, and
rep_status have a total of 16 unique values.

In addition, we have elected to annotate trial, rep_lag, value, and stim_file by describing these columns as a
whole, resulting in 4 additional annotations.

In all, we will have to provide a total of 8 + 4 + 4 + 1 + 1 + 1 + 1 = 20 HED annotations based on the selections we
have made.

6.4.2.4 Step 4: Download the template.

After you press the Process button, the online tools produce a JSON template file for you download. Save the file, and
you are ready to begin the actual annotation. You can edit the JSON sidecar using a text editor or other appropriate
tool.

The sub-002_task-FacePerception_run-1_events.tsv file generates this JSON sidecar template. The following is a
simplified excerpt of this template, which we will use to illustrate the rest of the annotation process.

JSON sidecar generated template.

{
"event_type": {

"Description": "Description for event_type",
"HED": {

"setup_right_sym": "(Label/event_type, Label/setup_right_sym)",
"left_press": "(Label/event_type, Label/left_press)",
"show_face": "(Label/event_type, Label/show_face)",
"show_circle": "(Label/event_type, Label/show_circle)"

},
"Levels": {

"setup_right_sym": "Description for setup_right_sym of event_type",
"left_press": "Description for left_press of event_type",
"show_face": "Description for show_face of event_type",
"show_circle": "Description for show_circle of event_type"

}
},
"stim_file": {

"Description": "Description for stim_file",
"HED": "(Label/stim_file, Label/#)"

}
}

Notice the difference in structure between annotations for columns that are designated as categorical columns (such
as event_type) and columns that are designated as value columns (such as stim_file). The HED annotations for
the non-categorical value columns must contain a # so that the individual column values can be substituted for the #
placeholder when the annotation is assembled.

6.4. BIDS annotation quickstart 37

HED Resources, Release 0.0.1

6.4.2.5 Step 5: Complete the annotation.

Once you have a JSON sidecar template, you should edit in your event annotations. The following is an edited version
of the simplified template excerpt containing a minimal set of HED annotations.

JSON sidecar with completed annotation.

{
"event_type": {

"Description": "The main category of the event.",
"HED": {

"setup_right_sym": "Experiment-structure, Condition-variable/Right-key-
→˓assignment",

"left_press": "Agent-action, Participant-response, (Press, Keyboard-key)",
"show_face": "Sensory-event, Experimental-stimulus, Visual-presentation,␣

→˓Image, Face",
"show_circle": "Sensory-event, (White, Circle), (Intended-effect, Cue)"

},
"Levels": {

"setup_right_sym": "Right index finger key press means above average␣
→˓symmetry.",

"left_press": "Participant presses a key with left index finger.",
"show_face": "Display a stimulus face image.",
"show_circle": "Display a white circle on black background."

}
},
"stim_file": {

"Description": "Filename of the presented stimulus image.",
"HED": "(Image, Pathname/#)"

}
}

If you feel comfortable working with JSON files you can edit the HED annotations and descriptions directly in the
JSON file.

The HED annotations in the examples are minimal to simplify the explanations. See Basic HED Annotation for
guidelines on how to select HED tags.

Once you have finished, you should validate your JSON file to make sure that your annotations are correct. See the
HED validation guide for detailed guidance. When you are satisfied with your valid JSON sidecar, simply upload it to
the root directory of your BIDS dataset, and you are done.

If you would rather work with spreadsheets when doing your annotations, you can extract a spreadsheet from the JSON
sidecar to edit and merge back after you are finished. This process is described in the next section, which you can skip
if you are going to edit the JSON directly.

38 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.4.3 Spreadsheet templates

Many people find working with a spreadsheet of annotations easier than direct editing a JSON events sidecar file. The
HED online tools provide an easy method for converting between a JSON sidecar and a spreadsheet representation.

You can convert the JSON events sidecar file into a spreadsheet for easier editing and then convert back to a JSON
file afterwards. This tutorial assumes that you already have a JSON events sidecar or have extracted a JSON sidecar
template.

Using the HED sidecar online tools, the steps to create a template are:

• Step 1: Select extract HED spreadsheet.

• Step 2: Upload a sidecar and extract.

• Step 3: Edit the spreadsheet.

• Step 4: Merge the spreadsheet.

6.4.3.1 Step 1: Select extract HED spreadsheet

Go to the Sidecar page of the HED online tools. You will see the following menu:

6.4. BIDS annotation quickstart 39

https://hedtools.ucsd.edu/hed/sidecar
https://hedtools.ucsd.edu/hed/sidecar

HED Resources, Release 0.0.1

Select Extract HED spreadsheet. The application will adjust to your selection, showing only the information you
need to provide.

6.4.3.2 Step 2: Upload a sidecar and extract.

Use the Browse button to choose an events.json file to upload. When the upload is complete, the local file name of
the uploaded events file will be displayed next to the Browse button.

Pressing the Process button causes the application to generate a downloadable tab-separated-value spreadsheet for
editing

An excerpt from the spreadsheet generated from the extracted JSON file is:

HED annotation table extracted from JSON sidecar template.

col-
umn_name

col-
umn_value

description HED

event_type setup_right_sym Description for
setup_right_sym

(Label/event_type, La-
bel/setup_right_sym)

event_type show_face Description for show_face (Label/event_type, Label/show_face)
event_type left_press Description for left_press (Label/event_type, Label/left_press)
event_type show_circle Description for show_circle (Label/event_type, Label/show_circle)
stim_file n/a Description for stim_file Label/#

The spreadsheet has 4 columns: the column_name corresponds to the column name in the events.tsv file. The
column_value corresponds to one of the unique values within that column. The description column is used to fill in

40 Chapter 6. History and Support

HED Resources, Release 0.0.1

the corresponding Levels value, while the HED column is used for the HED tags that make your annotation machine-
actionable. These tags are from the corresponding HED entry in the sidecar.

The last row of the excerpt has stim_file as the column_name. This column was not selected as a categorical column
when the sidecar template was created. The column_value for such columns is always n/a. The description column
is used for the Description value in the sidecar. The HED column tags must include a # placeholder in this case.
During analysis the column value is substituted for the # when the HED annotation is assembled.

6.4.3.3 Step 3: Edit the spreadsheet

After saving the file, you are free to edit it in a text editor or in a tool such as Excel. You may save the edited spreadsheet
in either .tsv or .xslx format.

The following is the extracted spreadsheet corresponding to the edited JSON sidecar above.

HED annotation table extracted from JSON sidecar template.

col-
umn_name

col-
umn_value

description HED

event_type setup_right_symRight index finger key pressmeans
above average symmetry.

Experiment-structure,Condition-
variable/Right-key-assignment

event_type show_face Display a stimulus face image. Sensory-event, Experimental-
stimulus,Visual-presentation, Image, Face

event_type left_press Participant presses keywith left index
finger.

Agent-action, Participant-response,(Press,
Keyboard-key)

event_type show_circle Display a white circle on black back-
ground.

Sensory-event, (White, Circle),(Intended-
effect, Cue)

stim_file n/a Filename of the presented stimulus im-
age.

(Image, Pathname/#)

If you wish a particular table cell to be ignored, use n/a in the cell.

6.4.3.4 Step 4: Merge the spreadsheet

Although editing metadata in a spreadsheet is convenient, BIDS stores all of its metadata in JSON files. If you choose
to extract a spreadsheet for editing your annotations, you will need to merge the edited spreadsheet back into a JSON
sidecar before including it in your BIDS dataset.

Using the HED sidecar online tools, select merge HED spreadsheet as shown below. You may choose an existing
edited sidecar, the original template, or an empty sidecar as the JSON target file for the merge.

6.4. BIDS annotation quickstart 41

https://hed-specification.readthedocs.io/en/latest/index.html
https://hedtools.ucsd.edu/hed/sidecar

HED Resources, Release 0.0.1

Pressing the Process button causes the application to generate a downloadable version of the merged JSON file.

The merging process replaces the HED section of the JSON file for a specified column name and column value with the
tags in the corresponding HED column of the spreadsheet.

Similarly, merging replaces the Levels section of the JSON file for a specified column name and column value with the
description in the corresponding description column of the spreadsheet. For value columns, the description replaces
the value of the Description entry corresponding to that column.

Since the BIDS JSON sidecar files may contain other information besides HED annotations, the merging process tries
to preserve the sidecar entries that are not directly related to the HED annotations. The merging process also ignores
description and HED spreadsheet entries containing n/a.

Notice that there is an option to include Description tags when doing the merge. If this box is checked, the contents of
the description field are prepended with the Description tag and appended to the tags.

42 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.5 HED annotation quickstart

This tutorial takes you through the steps of annotating the events using HED (Hierarchical Event Descriptors). The
tutorial focuses on how to make good choices of HED annotations to make your data usable for downstream analysis.
The mechanics of putting your selected HED annotations into BIDS (Brain Imaging Data Structure) format is covered
in the BIDS annotation quickstart guide.

• What is HED annotation?

• A recipe for simple annotation

6.5.1 What is HED annotation?

A HED annotation consists of a comma separated list of tags selected from a HED vocabulary or schema. An important
reason for using an agreed-upon vocabulary rather than free-form tagging for annotation is to avoid confusion and
ambiguity and to promote data-sharing.

The basic terms are organized into trees for easier access and search. The Expandable HED vocabulary viewer allows
you to explore these terms.

6.5.2 A recipe for simple annotation

In thinking about how to annotate an event, you should always start by selecting a tag from the Event subtree to indi-
cate the general event category. Possible choices are: Sensory-event, Agent-action, Data-feature, Experiment-control,
Experiment-procedure, Experiment-structure, and Measurement-event. See the Expandable HED vocabulary viewer
to view the available tags.

Most experiments will only have a few types of distinct events. The simplest way to create a minimal HED annotation
for your events is:

1. Select one of the 7 tags from the Event subtree to designate the general category of the event.

2. Use the following table to select the appropriate supporting tags given that event type.

Standard HED tag selections for minimal annotation.

6.5. HED annotation quickstart 43

https://bids.neuroimaging.io/
https://www.hedtags.org/display_hed.html
https://www.hedtags.org/display_hed.html

HED Resources, Release 0.0.1

Event tag Support tag type Example tags Reason
Sensory-event Sensory-

presentation
Visual-presentationAuditory-
presentation

Which sense?

Task-event-role Experimental-
stimulusInstructional

What task role?

Task-stimulus-role CueTarget Stimulus purpose?

Item (Face, Image)Siren What is presented?

Sensory-attribute Red What modifiers are needed?

Agent-action Agent-task-role Experiment-participant Who is agent?
Action MovePress What action is performed?

Task-action-type Appropriate-actionNear-miss What task relationship?

Item ArmMouse-button What is action target?

Data-feature Data-source-type Expert-annotationComputed-
feature

Where did the feature come
from?

Label Label/Blinker_BlinkMax Tool name?Feature type?

Data-value Percentage/32.5 Time-interval/1.5
s

Feature value or type?

Experiment-
control

Agent Controller-Agent What is the controller?

Informational Label/Stop-recording What did the controller do?

Experiment-
procedure

Task-event-role Task-activity What procedure?

Experiment-
structure

Organizational-
property

Time-blockCondition-variable What structural property?

Measurement-
event

Data-source-type Instrument-
measurementObservation

Source of the data.

Label Label/Oximeter_O2Level Instrument
name?Measurement type?

Data-value Percentage/32.5 Time-interval/1.5
s

What value or type?

As in BIDS, we assume that the event metadata is given in tabular form. Each table row represents the metadata
associated with a single data event marker, as shown in the following excerpt of the events.tsv file for a simple
Go/No-go experiment. The onset column gives the time in seconds of the marker relative to the beginning of the
associated data file.

Event file from a simple Go/No-go experiment.

44 Chapter 6. History and Support

HED Resources, Release 0.0.1

onset duration event_type value stim_file
5.035 n/a stimulus animal_target 105064.jpg
5.370 n/a response correct_response n/a
6.837 n/a stimulus animal_distractor 38068.jpg
8.651 n/a stimulus animal_target 136095.jpg
8.940 n/a response correct_response n/a
10.801 n/a stimulus animal_distractor 38014.jpg
12.684 n/a stimulus animal_distractor 82063.jpg
12.943 n/a response incorrect_response n/a

In the Go/No-go experiment, the experimental participant is presented with a series of target and distractor animal
images. The participant is instructed to lift a finger off a button when a target animal image appears. Since in this
experiment, the value column has distinct values for all possible unique event types, the event_type column is
redundant. In this case, we can choose to assign all the annotations to the value column as demonstrated in the
following example.

Version 1: Assigning all annotations to the value column.

value Event cate-
gory

Supporting tags

animal_target Sensory-event Visual-presentation, Experimental-stimulus,Target, (Animal, Image)
ani-
mal_distractor

Sensory-event Visual-presentation, Experimental-stimulus,Non-target, Distractor, (Ani-
mal, Image)

correct_response Agent-action Experiment-participant, (Lift, Finger), Correct-action
incor-
rect_response

Agent-action Experiment-participant, (Lift, Finger), Incorrect-action

The table above shows the event category and the supporting tags as suggested in the Standard hed tags for minimal
annotation table.

A better format for your annotations is the 4-column spreadsheet format described in BIDS annotation quickstart,
since there are online tools to convert this format into a JSON sidecar that can be deployed directly in a BIDS dataset.

4-column spreadsheet format for the previous example.

col-
umn_name

col-
umn_value

description HED

value ani-
mal_target

An target animal image waspre-
sented on a screen.

Sensory-event, Visual-presentation,Experimental-
stimulus,Target, (Animal, Image)

value ani-
mal_distractor

A non-target animal distractorim-
age was presentedon a screen.

Sensory-event, Visual-presentation,Experimental-
stimulus, Non-target,Distractor, (Animal, Image)

value cor-
rect_response

Participant correctlylifted finger
off button.

Agent-action, Experiment-participant,(Lift, Finger),
Correct-action

value incor-
rect_response

Participant lifted finger offthe but-
ton but should not have.

Agent-action, Experiment-participant,(Lift, Finger),
Incorrect-action

HED tools assemble the annotations for each event into a single HED tag string. An exactly equivalent version of the
previous example splits the HED tag annotation between the event_type and value columns as shown in the next

6.5. HED annotation quickstart 45

HED Resources, Release 0.0.1

example.

Version 2: Assigning annotations to multiple event file columns.

col-
umn_name

col-
umn_value

description HED

event_type stimulus An image of an animalwas presented on
acomputer screen.

Sensory-event, Visual-
presentation,experimental-stimulus

event_type response Participant lifted fingeroff button. Agent-action, Experiment-
participant,(Lift, Finger)

value ani-
mal_target

A target animal image. Target, (Animal, Image)

value ani-
mal_distractor

A non-target animal imagemeant as a dis-
tractor.

Non-target, Distractor,(Animal, Image)

value cor-
rect_response

The previous stimuluswas a target ani-
mal.

Correct-action

value incor-
rect_response

The previous stimuluswas not a target an-
imal.

Incorrect-action

stim_file n/a Filename of stimulus image. (Image, Pathname/#)

In version 2, the annotations that are common to all stimuli and responses are assigned to event_type. We have also
included the annotation for the stim_file column in the last row of this table.

The assembled annotation for the first event (with onset 5.035) in the event file excerpt from go/no-go above is:

Sensory-event, Visual-presentation, Experimental-stimulus, Target, (Animal, Image), (Image, Path-
name/105064.jpg)

Mapping annotations and column information across multiple column values often makes the annotation process sim-
pler, especially when annotations become more complex. Multiple column representation also can make analysis easier,
particularly if the columns represent information such as design variables.

See BIDS annotation quick start for how to create templates to fill in with your annotations using online tools. Once
you have completed the annotation and converted it to a sidecar, you simply need to place this sidecar in the root
directory of your BIDS dataset.

This quick start demonstrates the most basic HED annotations. HED is capable of much more extensive and expressive
annotations as explained in a series of tutorials on this site.

6.6 HED validation guide

6.6.1 What is HED validation?

HED validation is the process of checking the consistency and usage of HED annotations.

You should be sure to validate your data before applying analysis tools. Most HED analysis tools, such as those used for
searching, summarizing, or creating design matrices, assume that the dataset and its respective event files have already
been validated and do not re-validate during analysis.

This guide explains the types of errors that can occur and various ways that users can validate their HED (Hierarchical
Event Descriptor) annotations.

46 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.6.2 Types of errors

HED annotations consist of comma-separated lists of HED tags selected from valid HED vocabularies, referred to as
HED schemas. HED annotations may include arbitrary levels of parentheses to clarify associations among HED tags.

In some cases, mainly in BIDS sidecars, HED annotations may contain # placeholders, which are replaced by values
from the appropriate columns of an associated event file when HED annotations are assembled for analysis.

Two types of errors can occur: syntactic and semantic.

Syntactic errors refer to format errors that aren’t related to any particular HED schema, for example,
missing commas or mismatched parentheses.

Semantic errors refer to annotations that don’t comply with the rules of the particular HED vocabularies
used in the annotation, for example, invalid HED tags or values that have the wrong units or type. Semantic
errors also include higher-level requirements such as missing definitions or unmatched Offset tags when
designating the temporal scope of events.

Current versions of the validators do not separate these phases and require that the appropriate HED schemas are
available at the time of validation.

See HED validation errors for a list of the validation errors that are detected by validation tools.

6.6.3 Available validators

HED currently supports native validators for Python and JavaScript. Both validators support HED-specification v3.0.0.

6.6.3.1 Python validator

The Python validator included in HEDTools on PyPI is used as the basis for most HED analysis tools. Generally, new
HED features are first implemented and tested in this validator before propagating to other tools in the HED ecosystem.
The source code for HEDTools is available in the hed-python GitHub repository. The latest features appear on the
develop branch before being propagated to master and then released.

6.6.3.2 JavaScript validator

The JavaScript hed-validator on npm is the package used for validation in BIDS. Although the main interface is
designed for BIDS integration, the underlying validation functions can be called directly. The source code is available
in the hed-javascript GitHub repository.

6.6.3.3 MATLAB support

Validation in MATLAB is currently not directly supported, although some discussion about future native support is
ongoing. MATLAB users should use the HED online validation tools or the HED RESTful services interface as
discussed below.

6.6. HED validation guide 47

https://hed-specification.readthedocs.io/en/latest/05_Advanced_annotation.html#temporal-scope
https://hed-specification.readthedocs.io/en/latest/Appendix_B.html#b-1-hed-validation-errors
https://raw.githubusercontent.com/hed-standard/hed-specification/master/hedspec/HEDSpecification_3_0_0.pdf
https://pypi.org/project/hedtools/
https://github.com/hed-standard/hed-python
https://www.npmjs.com/package/hed-validator/v/3.7.0
https://bids.neuroimaging.io/
https://github.com/hed-standard/hed-javascript
https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

6.6.4 Validation strategies

In most experiments, the event files and metadata sidecars share a common structure. A practical HED approach is to
annotate and validate a single events file and json sidecar using the online tools before trying to validate entire dataset.
If most of the annotations are in a BIDS JSON sidecar, this may be all you need to complete annotation.

How to approach HED annotation.

1. Use the online tools to validate a single event file and sidecar if available.

2. Correct errors. (This will get most of the HED errors out.)

3. Use Jupyter notebooks or the remodeling tools to fully validate the HED in the dataset.

4. Use the BIDS validators to validate all aspects of the dataset, if the dataset is in BIDS.

6.6.4.1 Validation in BIDS

BIDS validates many aspects of a dataset beyond HED, including the format and metadata for all the files in the dataset.
Thus, a dataset may have valid HED annotations but not be completely valid in BIDS.

Specifying the HED version

BIDS datasets that have HED annotations, should have the HEDVersion field specified in dataset_description.
json as illustrated in the following example:

Sample dataset_description.json for a BIDS dataset.

{
"Name": "Face processing MEEG dataset with HED annotation",
"BIDSVersion": "1.8.4",
"HEDVersion": "8.1.0",
"License": "CC0"

}

BIDS online validator

The simplest way to validate a BIDS dataset is to use the BIDS online validator:

_static/images/BIDSOnlineValidator.png

The BIDS online validator is available at https://bids-standard.github.io/bids-validator/. The BIDS validators use
the hed-validator JavaScript package available at npm to do the validation.

See the bids-validator for additional details.

48 Chapter 6. History and Support

https://bids-standard.github.io/bids-validator/
https://www.npmjs.com/package/hed-validator
https://docs.npmjs.com/
https://github.com/bids-standard/bids-validator

HED Resources, Release 0.0.1

6.6.4.2 HED online validation

The HED online validation tools are available at https://hedtools.ucsd.edu/hed. The HED web-based tools are de-
signed to act on a single file (e.g. events, sidecar, spreadsheet, schema), but may require supporting files.

For example, the following screenshot shows the menu for the online event validation tools. The buttons in the banner
allow you to select the type of file to operate on.

Once you have selected the type by pressing the banner button, you will see a menu for the particular type selected, in
this case an events file.

Menu for validating an events file using the HED online tools.

The default action for events is validation, but you can choose other operations by picking another action. The validate
operation has one option: whether to check for warnings as well as errors.

Upload the events file and the supporting JSON sidecar using the Browser buttons. If you aren’t using the latest HED
vocabulary, you can use the HED schema version pull-down to select the desired schema.

6.6. HED validation guide 49

https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

When you press the Process button, the files (event file and sidecar) are validated. If the files have errors, a downloadable
text file containing the error messages is returned. Otherwise, a message indicating successful validation appears at the
bottom of the screen.

The online tools support many other operations and most of them automatically validate the files before applying the
requested operation. For example, one of the available actions shown on the menu above is assembling all the HED
tags applicable to each line in the events file.

New features of the tools take a while to propagate to the released version of the online tools. Use the HED online
development server to access the latest versions.

6.6.4.3 Validation for MATLAB users

HED validation in MATLAB is currently done by accessing the HED online tools as web services.

Direct access to services

Users can access these services directly by calling using the HED MATLAB web services functions as explained in
HED services in MATLAB. Download the web_services directory from GitHub and include this directory in your
MATLAB path. The runAllTests.m script calls all the services on test data.

Access through EEGLAB

EEGLAB users can access HED validation through the EEGLAB HEDTools plugin.

CTagger is an annotation tool that guides users through the tagging process using a graphical user interface. CTagger
is available as a stand-alone program as well from EEGLAB through the HEDtools plugin.

Access through Fieldtrip

An interface for accessing HED in Fieldtrip has recently been added, but is not yet fully documented.

6.6.4.4 Validation for Python users

The HEDTools for Python are available on PyPI and can be installed using the usual Python package installation
mechanisms with PIP. However, new features are not immediately available in the released version. If you need the
latest version you should install the develop branch of the GitHub hed-python repository directly using PIP.

Installing the Python HedTools from the develop branch on GitHub.

pip install git+https://github.com/hed-standard/hed-python/@develop

50 Chapter 6. History and Support

https://hedtools.ucsd.edu/hed_dev
https://hedtools.ucsd.edu/hed_dev
https://github.com/hed-standard/hed-examples/tree/main/hedcode/matlab_scripts/web_services
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/runAllTests.m
https://sccn.ucsd.edu/eeglab/index.php
https://www.fieldtriptoolbox.org/
https://pypi.org/project/hedtools/
https://github.com/hed-standard/hed-python

HED Resources, Release 0.0.1

Jupyter notebooks for validation

Several Jupyter notebooks are available as wrappers for calling various Python HED tools.

For example, the bids_validate_datasets.ipynb notebook shown in the following example validates an entire BIDS
dataset just give the path to the root directory of the dataset.

Python code to validate HED in a BIDS dataset.

import os
from hed.errors import get_printable_issue_string
from hed.tools import BidsDataset

Set the dataset location and the check_for_warnings flag
check_for_warnings = False
bids_root_path = 'Q:/PerceptionalON'

Validate the dataset
bids = BidsDataset(bids_root_path)
issue_list = bids.validate(check_for_warnings=check_for_warnings)
if issue_list:

issue_str = get_printable_issue_string(issue_list, "HED validation errors: ", skip_
→˓filename=False)
else:

issue_str = "No HED validation errors"
print(issue_str)

Errors, if any are printed to the command line.

Remodeling validation summaries

Validation is also available through HED remodeling tool interface. As explained in File remodeling quickstart, the
HED remodeling tools allow users to restructure their event files and/or summarize their contents in various ways. Users
specify a list of operations in a JSON remodeling file, and the HED remodeler executes these operations in sequence.

Validation is a summary operation, meaning that it does not modify any event files, but rather produces a summary,
in this case of HED validation errors for the dataset. An example of a remodeling operation that is not a summary
operation is an operation to rename the columns in an event file.

The following example shows a JSON remodel file containing a single operation — validating event files.

Example JSON remodel file for HED validation.

[
{

"operation": "summarize_hed_validation",
"description": "Validate event file and list errors in a summary.",
"parameters": {

"summary_name": "validate_initial",
"summary_filename": "validate_initial",
"check_for_warnings": true

(continues on next page)

6.6. HED validation guide 51

https://github.com/hed-standard/hed-examples/tree/main/hedcode/jupyter_notebooks
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids/bids_validate_datasets.ipynb

HED Resources, Release 0.0.1

(continued from previous page)

}
}

]

Since remodeling summaries do not affect the actual contents of the events files, This summary can be created without
using the backup infrastructure.

The following example performs HED validation on the BIDS dataset (-b option) whose root directory is /root_path.
The remodeling file path (corresponding to the JSON in the previous example) is also set.

Example JSON remodel file for HED validation.

import hed.tools.remodeling.cli.run_remodel as run_remodel

data_root = "/root_path"
model_path = "/root_path/derivatives/remodel/models/validate_rmdl.json"
args = [data_root, model_path, '-x', 'derivatives', 'stimuli', '-n', '', '-b', '-r', '8.
→˓1.0']
run_remodel.main(args)

This remodeling action will perform HED validation on all the event files in the specified BIDS dataset, excluding the
derivatives and stimuli directories (-x option). The event files and associated sidecars are located using the BIDS
naming convention.

The results of the validation are stored in the file name specified in the remodeling file in the derivatves/remodel/
summaries directory under the data root. A timestamp is appended to the file name each time the operation is executed
to distinguish files.

Both a .json and a .txt file are created. For example, the text file is: /root_path/derivatives/remodel/
summaries/validate_initial_xxx.txt where xxx is the time of generation.

For more information see File remodeling quickstart for an overview of the remodeling process and File remodeling
tools for detailed descriptions of the operations that are currently supported.

6.7 HED search guide

Many analysis methods locate event markers with specified properties and extract sections of the data surrounding these
markers for analysis. This extraction process is called epoching or trial selection.

Analysis may also exclude data surrounding particular event markers.

Other approaches find sections of the data with particular signal characteristics and then determine which types of event
markers are more likely to be associated with data sections having these characteristics.

At a more global level, analysts may want to locate datasets whose event markers have certain properties in choosing
data for initial analysis or for comparisons with their own data.

52 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.7.1 HED search basics

Datasets whose event markers are annotated with HED (Hierarchical Event Descriptors) can be searched in a dataset
independent manner. The HED search facility has been implemented in the Python HEDTools library, an open source
Python library. The latest versions are available in the hed-python GitHub repository.

To perform a query using HEDTools, users create a query object containing the parsed query. Once created, this query
object can then be applied to any number of HED annotations – say to the annotations for each event-marker associated
with a data recording.

The query object returns a list of matches within the annotation. Usually, users just test whether this list is empty to
determine if the query was satisfied.

6.7.1.1 Calling syntax

To perform a search, create a TagExpressionParser object, which parses the query. Once created, this query object
can be applied to search multiple HED annotations. The syntax is demonstrated in the following example:

Example calling syntax for HED search.

schema = load_schema_version("8.1.0")
hed_string = HedString("Sensory-event, Sensory-presentation", schema=schema)
query_string = "Sensory-event"
query = QueryParser(query_string)
result = query.search(hed_string)
if result:

print(f"{query_string} found in {str(hed_string)})

In the example the strings containing HED annotations are converted to a HedString object, which is a parsed repre-
sentation of the HED annotation. The query facility assumes that the annotations have been validated. A HedSchema
is required. In the example standard schema version 8.1.0 is loaded. The schemas are available on GitHub.

The query is represented by a QueryParser object. The search method returns a list of groups in the HED string that
match the query. This return list can be quite complex and usually must be filtered before being used directly. In many
applications, we are not interested in the exact groups, but just whether the query was satisfied. In the above example,
the result is treated as a boolean value.

Warning:

• If you are searching many strings for the same expression, be sure to create the QueryParser only once.

• The current search facility is case-insensitive.

6.7. HED search guide 53

https://pypi.org/project/hedtools/
https://github.com/hed-standard/hed-python

HED Resources, Release 0.0.1

6.7.1.2 Single tag queries

The simplest type of query is to search for the presence of absence of a single tag. HED offers four variations on the
single tag query as summarized in the following table.

Query type Ex-
ample
query

Matches Does not
match

Single-termMatch the term or any
child.Don’t consider values orextensions
when matching.

Agent-
trait

Agent-traitAgeAge/35Right-
handedAgent-trait/GlassesAgent-
property/Agent-trait(Age, Blue)

Agent-
property

Quoted-tagMatch the exact tag withexten-
sion or value

“Age” AgeAgent-trait/Age Age/35

“Age/34” Age/34Agent-trait/Age/34 Age/35

Tag-path with slashMatch the exact tag
withextension or value

Age/34 Age/34 AgeAge/35Agent-
trait/Age/34

Tag-prefix with wildcardMatch the start-
ing portionof a tag and possibly itsvalue or
extension.

Age/3* Age/34Age/3Agent-trait/Age/34 AgeAge/40

The meanings of the different queries are explained in the following subsections.

Single-term search

In a single-term search, the query is a single term or node in the HED schema. The query may not contain any slashes
or wildcards.

Single-term queries leverage the HED hierarchical structure, recognizing that schema children of the query term should
also satisfy the query. This is HED’s is-a principle.

The example query in the above table is Agent-trait. The full path of Agent-trait in the HED schema is Property/Agent-
property/Agent-trait. Further, the Agent-trait has several child nodes including: Age, Agent-experience-level, Gender,
Sex, and Handedness.

The single-term query matches child tags without regard to tag extension or value. Hence, Agent-trait matches Age
which is a child and Age/35 which is child with a value. Agent-trait, itself, may be extended, so Agent-trait also matches
Agent-trait/Glasses. Here Glasses is a user-extension.

Quoted-tag search

If the tag-term is enclosed in quotes, the search matches that tag exactly. If you want to match a value as well, you
must include that specific value in the quoted tag-term. This is exactly the same as Tag-path with slash, except you can
search a single term without a slash.

54 Chapter 6. History and Support

https://www.hedtags.org/display_hed.html

HED Resources, Release 0.0.1

Tag-path with slash

If the query includes a slash in the tag path, then the query must match the exact value with the slash. Thus, Age/34
does not match Age or Age/35. The query matches Agent-trait/Age/34 because the short-form of this tag-path is Age/34.
The tag short forms are used for the matching to assure consistency.

Tag-prefix with wildcard

Matching using a tag prefix with the * wildcard, matches the starting portion of the tag. Thus, Age/3* matches Age/3
as well as Age/34.

Notice that the query Age* matches a myraid of tags including Agent, Agent-state, and Agent-property.

6.7.1.3 Logical queries

In the following A and B represent HED expressions that may contain multiple comma-separated tags and parenthesized
groups. A and B may also contain group queries as described in the next section. The expressions for A and B are each
evaluated and then combined using standard logic.

Query form Example
query

Matches Does not match

A, BMatch if both A and Bare
matched.

Event,
Sensory-
event

Event, Sensory-eventSensory-
event, Event(Event, Sensory-
event)

Event

A and BMatch if both A and
B are matched. Same as the
comma notation.

Event and
Sensory-
event

Event, Sensory-eventSensory-
event, Event(Event, Sensory-
event)

A or BMatch if either A or B. Event or
Sensory-
event

Event, Sensory-eventSensory-
event, Event(Event, Sensory-
event)EventSensory-event

Agent-trait

~AMatch groups that donot
contain A A can be an arbitrary
expression.

[[Event,
~Action]]

(Event)(Event, Animal-
agent)(Sensory-event, (Action))

EventEvent, Action(Event, Ac-
tion)

@AMatch a line that does not
contain A.

@Event ActionAgent-traitAction, Agent-
Trait(Action, Agent)

Event(Action, Event)(Action,
Sensory-event)(Agent,
(Sensory-event, Blue))

6.7.1.4 Group queries

Tag grouping with parentheses is an essential part of HED annotation, since HED strings are independent of ordering
of tags or tag groups at the same level.

Consider the annotation:

Red, Square, Blue, Triangle

In this form, tools cannot distinguish which color goes with which shape. Annotators must group tags using parentheses
to make the meaning clear:

(Red, Square), (Blue, Triangle)

Indicates a red square and a blue triangle. Group queries allow analysts to detect these groupings.

6.7. HED search guide 55

HED Resources, Release 0.0.1

As with logical queries, A and B represent HED expressions that may contain multiple comma-separated tags and
parenthesized groups.

Query form Example
query

Matches Does not
match

[[A, B]]Match a group thatcontains both A and Bat
the same levelin the same group.

[[Red,
Blue]]

(Red, Blue)(Red, Blue, Green) (Red, (Blue,
Green))

[A, B] Match a group thatcontains A and B. Both A
and B couldbe any subgroup level.

[Red,
Blue]

(Red, (Blue, Green))((Red, Yel-
low), (Blue, Green))

Red, (Blue,
Green)

These operations can be arbitrarily nested and combined, as for example in the query:

[A or [[B and C]]]

In this query Ordering on either the search terms or strings to be searched doesn’t matter unless it will impact precedence
on the expression. Use logical grouping with parentheses to assure the expected order.

Precedence is purely left to right outside of grouping operations. Thus, unlike many traditional programming languages,
and does not take precedence over or. This may change in the future.

6.7.2 Where can HED search be used?

The HED search facility allows users to form sophisticated queries based on HED annotations in a dataset-independent
manner. These queries can be used to locate data sets satisfying the specified criteria and to find the relevant event
markers in that data.

For example, the factor_hed_tags operation of the HED file remodeling tools creates factor vectors for selecting
events satisfying general HED queries.

The HED-based epoching tools in EEGLAB can use HED-based search to epoch data based on HED tags.

Work is underway to integrate HED-based search into other tools including Fieldtrip and MNE-python as well into
the analysis platforms NEMAR and EEGNET

6.8 HED summary guide

The HED File remodeling tools provide a number of event summaries and event file transformations that are very
useful during curation and analysis.

The summaries described in this guide are:

• Column value summary

• HED tag summary

• Experimental design summary

As described in more detail in the File remodeling quickstart tutorial and the File remodeling tools user manual,
these tools have as input, a JSON file with a list of remodeling commands and an event file. Summaries involving HED
also require a HED schema version and possibly a JSON sidecar containing HED annotations.

The summary tools produce text and/or JSON summaries of the tabular files (usually event files). Summaries accu-
mulate the results for each tabular file that is input. When the results are output, the summary tools produce an overall
summary of all input files that have been processed and, if requested, also include an individual summary for each input
file.

56 Chapter 6. History and Support

https://www.hed-resources.org/en/latest/FileRemodelingTools.html#factor-hed-tags
https://www.hed-resources.org/en/latest/FileRemodelingTools.html
https://www.hed-resources.org/en/latest/HedMatlabTools.html#hed-based-epoching
https://sccn.ucsd.edu/eeglab/index.php
https://www.fieldtriptoolbox.org/
https://mne.tools/stable/index.html
https://nemar.org/
http://eegnet.org/
https://www.hed-resources.org/en/latest/FileRemodelingTools.html
https://www.hed-resources.org/en/latest/FileRemodelingQuickstart.html
https://www.hed-resources.org/en/latest/FileRemodelingTools.html

HED Resources, Release 0.0.1

The examples in this tutorial use the Wakeman-Hanson Face Processing dataset as an example. A reduced version
containing 2 subjects and no imaging data is used to produce the summaries in the examples. The reduced dataset has
6 event files each containing 200 events. The full dataset is available on OpenNeuro as ds003645.

Each example only shows the overall summary with links to the full summaries that include individual summaries. The
summaries use a [number events, number files] display of the counts of how many events and files an item appears
in.

6.8.1 Column value summary

The summarize_column_value operation produces a summary of three types of columns:

• categorical column: the summary counts the number of events (rows) and files for each unique column value.

• value column: the summary counts the number of files containing the column and total number of rows in the
column.

• skip columns: are ignored.

The categorical column information is useful for spotting inconsistencies and unexpected values. For example, if a trial
consists of stimulus–>key-press–>feedback and there are fewer key-press events in a file than stimulus or feedback
events, you can conclude that either the participant failed to respond in some trials or the responses were not properly
recorded.

The value column information in the current release of the remodeling tools is limited. However, if a value column
file count is different from the number of event files in the dataset, you can conclude that some event files are missing
that column or have that column multiple times. More extensive information reporting for value columns is planned
for future releases.

A sample JSON remodeling file with the command for creating a column value summary is shown in the following
example. The remodeling file specifies how columns are treated. Columns that are not listed as skip_columns or
value_columns are assumed to be categorical columns.

Example JSON remodeling file for a column value summary.

[{
"operation": "summarize_column_values",
"description": "Summarize the column values in an excerpt.",
"parameters": {

"summary_name": "column_values_summary",
"summary_filename": "column_values_summary",
"skip_columns": ["onset", "duration"],
"value_columns": ["stim_file", "trial"]

}
}]

The following excerpt shows the dataset portion of the resulting summary in text format:

Text format excerpt with dataset-level summary of column values.

Context name: column values summary
Context type: column_values
Context filename: column_values_summary

(continues on next page)

6.8. HED summary guide 57

https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed
https://openneuro.org/datasets/ds003645/versions/2.0.0

HED Resources, Release 0.0.1

(continued from previous page)

Overall summary:
Dataset: Total events=1200 Total files=6

Categorical column values[Events, Files]:
event_type:

double_press[1, 1] left_press[83, 4] right_press[168, 6] setup_right_sym[6, 6]␣
→˓show_circle[316, 6] show_cross[310, 6] show_face[310, 6] show_face_initial[6, 6]

face_type:
famous_face[108, 6] n/a[884, 6] scrambled_face[103, 6] unfamiliar_face[105, 6]

rep_lag:
1[77, 6] 10[15, 6] 11[13, 5] 12[9, 5] 13[7, 6] 14[6, 4] 15[2, 2] 6[1, 1] 7[2,␣

→˓2] 8[6, 4] 9[10, 6] n/a[1052, 6]
rep_status:

delayed_repeat[71, 6] first_show[168, 6] immediate_repeat[77, 6] n/a[884, 6]
Value columns[Events, Files]:

stim_file[1200, 6]
trial[1200, 6]

Notice that there is one double_press event in the event_type column of one of the six event files analyzed in this
summary. To narrow down which file this double_press event occurred in, we could look at the full text summary,
which includes individual summaries for each event file.

We also observe that three values famous_face, unfamiliar_face and scrambled_face appear roughly the same number
of times in the face_type across the six dataset. The large number of n/a values in face_type is because the type of face
is only specified for the stimulus events:

108 (famous_face) + 103 (scrambled_face) + 105 (unfamiliar_face) =
310 (show_face) + 6 (show_face_initial)

As expected, the show_face_initial appears exactly once in each file (e.g., [6 events, 6 files]) since it is a setup-event.

6.8.2 HED tag summary

The HED tag summary gives an overall picture of the types of HED tags in the dataset along with counts and the number
of files that these tags appear in. An advantage that HED tag summaries have over straight column value summaries is
that the tags are comparable across experiments, while column values are experiment-specific.

The tags dictionary specifies how the results should be reported. In the following remodeling file for generating a HED
tag summary, the tag counts will be grouped under the titles: “Sensory events”, “Agent actions” and “Items”. Tags that
don’t fit in these three categories will be grouped under “Other tags”.

Example JSON remodeling file for a HED tag summary.

[{
"operation": "summarize_hed_tags",
"description": "Summarize the HED tags in the dataset.",
"parameters": {

"summary_name": "hed_tag_summary",
"summary_filename": "hed_tag_summary",
"tags": {

"Sensory events": ["Sensory-event", "Sensory-presentation",
"Task-stimulus-role", "Experimental-stimulus"],

"Agent actions": ["Agent-action", "Agent", "Action", "Agent-task-role",
(continues on next page)

58 Chapter 6. History and Support

HED Resources, Release 0.0.1

(continued from previous page)

"Task-action-type", "Participant-response"],
"Objects": ["Item"]

},
"expand_context": false

}
}]

The following excerpt shows the dataset portion of the resulting summary in text format when running on the reduced
version face processing dataset, which has 6 event files containing a total of 1200 events.

Text format excerpt with dataset-level summary of hed tag counts

Context name: summarize_hed_tags
Context type: hed_tag_summary
Context filename: hed_tag_summary

Dataset
Main tags[events,files]:

Sensory events:
Sensory-event[942,6] Cue[626,6] Experimental-stimulus[316,6]

Agent actions:
Agent-action[252,6] Press[1,1] Indeterminate-action[1,1] Participant-

→˓response[251,6]
Objects:

Image[942,6] Face[148,6] Keyboard-key[1,1]
Other tags[events,files]:

Experiment-structure[6,6] Def[1199,6] Onset[948,6] Experimental-trial[1194,6]
Pathname[942,6] Intended-effect[626,6] Offset[936,6] Item-interval[148,6]

The summary indicates that the event type breakdown:

942 sensory events + 252 agent actions + 6 experiment structure events = 1200 events

Further, there were 626 cues and 316 experimental stimuli among the sensory events.

6.8.3 Experimental design summary

The HED type summary allows users to obtain a detailed summary of a particular tag. Usually type summaries are
used for Condition-variable tag, which encodes experimental conditions and design. The HED conditions and design
matrices tutorial explains how this information is encoded and can be used.

Type summaries based on the Task tag and Time-block tag are also informative.

Example JSON remodeling file for a HED type summary based on Condition-variable.

[{
"operation": "summarize_hed_type",
"description": "Summarize the condition variable tags in the dataset.",
"parameters": {

"summary_name": "wh_condition_variables",
(continues on next page)

6.8. HED summary guide 59

https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed
https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed

HED Resources, Release 0.0.1

(continued from previous page)

"summary_filename": "wh_condition_variables",
"type_tag": "condition-variable"

}
}]

The HED type summaries automatically expand the event-context, so that an event that has an Onset tag will affect all
intermediate events until its Offset.

The result of applying the above operation to the sample data is:

Text format excerpt with dataset-level summary of hed type (condition-variable) counts.

Dataset: 3 condition-variable types in 6 files with a total of 1200
key-assignment: 1 levels in 1200 events out of 1200 total events in 6 files

right-sym-cond [1200 events, 6 files]:
Tags: ['Index-finger', 'Right-side-of', 'Experiment-participant', 'Behavioral-

→˓evidence',
'Symmetrical', 'Index-finger', 'Left-side-of', 'Experiment-participant',
'Behavioral-evidence', 'Asymmetrical']

Description: Right index finger key press indicates a face with above average␣
→˓symmetry.

face-type: 3 levels in 316 events out of 1200 total events in 6 files
unfamiliar-face-cond [105 events, 6 files]:

Tags: ['Image', 'Face', 'Unfamiliar']
Description: A face that should not be recognized by the participants.

famous-face-cond [108 events, 6 files]:
Tags: ['Image', 'Face', 'Famous']
Description: A face that should be recognized by the participants

scrambled-face-cond [103 events, 6 files]:
Tags: ['Image', 'Face', 'Disordered']
Description: A scrambled face image generated by taking face 2D FFT.

repetition-type: 3 levels in 316 events out of 1200 total events in 6 files
first-show-cond [168 events, 6 files]:

Tags: ['Item-count', 'Face', 'Item-interval']
Description: Factor level indicating the first display of this face.

immediate-repeat-cond [77 events, 6 files]:
Tags: ['Item-count', 'Face', 'Item-interval']
Description: Factor level indicating this face was the same as previous one.

delayed-repeat-cond [71 events, 6 files]:
Tags: ['Item-count', 'Face', 'Item-interval', 'Greater-than-or-equal-to', 'Item-

→˓interval']
Description: Factor level indicating face was seen 5 to 15 trials ago.

This summary has three condition variables: key-assignment, face-type and repetition-type. The face-type and
repetition-type each have three levels encoding a 3 x 3 experimental design. The face-type condition variable has
three levels with roughly equal numbers of occurrences (famous-face-cond with 108 events, scrambled-face-cond with
103 events, and unfamiliar-face-cond with 105 events).

This information is similar to that obtained in the column value summary, but only because these condition variables
were directly encoded by columns face_type and repetition_type in the events files. The HED approach allows
a more general, dataset-independent extraction of design matrices and experimental conditions.

60 Chapter 6. History and Support

HED Resources, Release 0.0.1

The final condition variable key-assignment only has one level and appears in all events in all the files. In reality the
key assignment is designated in a single event in each file, but it appears with an Onset and no Offset, indicating that it
runs until the end of the file. The key-assignment condition actually has two levels: right-sym-cond and left-sym-cond,
but this condition is counter-balanced across subjects rather than trials. The two subjects in the sample data both were
assigned the right-sym-cond.

6.9 HED conditions and design matrices

This tutorial discusses how information from neuroimaging experiments should be stored and annotated so that the
underlying experimental design and experimental conditions for a dataset can be automatically extracted, summarized,
and used in analysis. The mechanisms for doing this use HED (Hierarchical Event Descriptors) in conjunction with a
BIDS (Brain Imaging Data Structure) representation of the dataset.

The tutorial assumes that you have a basic understanding of HED and how HED annotations are used in BIDS. Please
review Annotating a BIDS dataset, the BIDS annotation quickstart, and the HED annotation quickstart tutorials
as needed.

The Experimental design concepts section at the end of this tutorial provides a basic introduction to the ideas of factor
vectors and experimental design if you are unfamiliar with these topics.

• HED annotations for conditions

– Direct condition variables

– Defined condition variables

– Direct vs defined approaches)

– Column vs row annotations

• Experimental design concepts

– Design matrices and factor variables

– Types of condition encoding

This tutorial introduces tools and strategies for encoding information about the experimental design as part of a dataset
metadata without excessive effort on the part of the researcher. The discussion mainly focuses on categorical variables.

6.9.1 HED annotations for conditions

As mentioned above, HED (Hierarchical Event Descriptors) provide several mechanisms for easily annotating the exper-
imental conditions represented by a BIDS dataset so that the information can be automatically extracted, summarized,
and used by tools.

HED has three ways of annotating experimental conditions: condition variables without definitions, condition variables
with definitions but no levels, and condition variables with levels. All three mechanisms use the Condition-variable tag
as part of the annotation. The three mechanisms can be used in any combination to document the experimental design
for a dataset.

6.9. HED conditions and design matrices 61

https://bids.neuroimaging.io/
https://bids-standard.github.io/bids-starter-kit/tutorials/annotation.html
https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html
https://hed-examples.readthedocs.io/en/latest/HedAnnotationQuickstart.html

HED Resources, Release 0.0.1

6.9.1.1 Direct condition variables

The simplest way to encode experimental conditions is to use named Condition-variable tags for each condition value.
The following is a sample excerpt from a simplified event file for an experiment to distinguish brain responses for
houses and faces.

Example 1. Excerpt from a sample event file from a simplified house-face experiment.

onset duration event_type stim_file
2.010 0.1 show_house ranch1.png
3.210 0.1 show_house colonial68.png
4.630 0.1 show_face female43.png
6.012 0.1 show_house castle2.png
7.440 0.1 show_face male81.png

As explained in BIDS annotation quickstart, the most commonly used strategy for annotating events in a BIDS dataset
is to create a single JSON file located in the dataset root containing the annotations for the columns. The following
shows a minimal example:

Example 2: Minimal JSON sidecar with HED annotations for Example 1.

{
"event_type": {
"HED": {
"show_house": "Sensory-presentation, Visual-presentation, Experimental-stimulus,

→˓ (Image, Building/House), Condition-variable/House-cond",
"show_face": "Sensory-presentation, Visual-presentation, Experimental-stimulus,␣

→˓(Image, Face), Condition-variable/Face-cond"
}

},
"stim_file": {
"HED": "(Image, Pathname/#)"

}
}

Each row in an events.tsv file represents a time marker in the corresponding data recording. At analysis time, HED
tools look up each events.tsv column value in the JSON file and concatenate the corresponding HED annotation into
a single string representing the annotation for that row. Annotations without #’s are used directly, while annotations
with # have the corresponding column values substituted when the annotation is assembled.

Example 3 shows the Hed annotation for the first row in the events.tsv file of Example 1.

Example 3: HED annotation for first event in Example 1 using JSON sidecar of Example 2.

“Sensory-presentation, Visual-presentation, Experimental-stimulus,
(Image, Building/House), Condition-variable/House-cond,
(Image, Pathname/ranch1.png)”

Notice that Building/House is a partial path rather than a single tag. This is because House is currently not part of the
base HED vocabulary. However, users are allowed to extend tags at most nodes in the HED schema, but they must use
a path that includes a least one ancestor in the HED schema.

62 Chapter 6. History and Support

https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html

HED Resources, Release 0.0.1

HED tools have the capability of automatically detecting Condition-variable tags in annotated HED datasets to create
factor vectors and summaries automatically. Example 4 shows the event file after HED tools have appended one-hot
factor vectors for the two condition variables Condition-variable/House-cond and Condition-variable/Face-cond. The
1’s and 0’s house_cond and face-cond columns indicate presence or absence of the corresponding condition variables.

Example 4. Event file from Example 2 after one-hot factor vector extraction.

onset duration event_type stim_file house-cond face-cond
2.010 0.1 show_house ranch1.png 1 0
3.210 0.1 show_house colonial68.png 1 0
4.630 0.1 show_face female43.png 0 1
6.012 0.1 show_house castle2.png 1 0
7.440 0.1 show_face male81.png 0 1

Example 5 shows a JSON summary that HED tools can extract from a single events file once a dataset has been
annotated using HED. This very simple example only had two condition variables and only used direct references to
these condition variables. Dataset-wide summaries can also be extracted.

Example 5: The HED tools summary of condition variables for Example 4.

{
"house-cond": {
"name": "house-cond",
"variable_type": "condition-variable",
"levels": 0,
"direct_references": 3,
"total_events": 5,
"number_type_events": 3,
"number_multiple_events": 0,
"multiple_event_maximum": 1,
"level_counts": {}

},
"face-cond": {
"name": "face-cond",
"variable_type": "condition-variable",
"levels": 0,
"direct_references": 2,
"total_events": 5,
"number_type_events": 2,
"number_multiple_events": 0,
"multiple_event_maximum": 1,
"level_counts": {}

}
}

The summary shows that of the 5 events in the file: 3 events were under the house condition and 2 events were under
the face condition. There were no events in multiple categories of the same condition variables (which would not
be possible since these condition variables were referenced directly rather than using assigned levels). All names are
translated to lower case as HED is case-insensitive with respect to analysis, and the summary and factorization tools
convert to lower case before processing.

6.9. HED conditions and design matrices 63

HED Resources, Release 0.0.1

These HED summaries can be created for other tags besides Condition-variable, hence the variable_type is given in
the summary of Example 5. Other commonly created summaries are for Task and Control-variable.

In this example, the two conditions: house-cond and face-cond are treated as though they were unrelated. These direct
condition variables are very easy to annotate— just make up a name and stick the tags anywhere you want to create
factor variables or summaries. However, a more common situation is for a condition variable to have multiple levels,
which direct use condition variables does not support.

Another disadvantage of direct condition variables is that there is no information about what the conditions represent
beyond the arbitrarily chosen condition names.

A third disadvantage is that direct condition variables can not be used to anchor events with temporal extent.

The next section introduces defined condition variables, which address both of these disadvantages.

6.9.1.2 Defined condition variables

Example 6: A revised JSON sidecar using defined conditions for Example 1.

{
"event_type": {
"HED": {
"show_house": "Sensory-presentation, Visual-presentation, Experimental-stimulus,

→˓ (Image, Building/House), Def/House-cond",
"show_face": "Sensory-presentation, Visual-presentation, Experimental-stimulus,␣

→˓(Image, Face), Def/Face-cond"
}

},
"stim_file": {
"HED": "(Image, Pathname/#)"

},
"my_definitions": {
"HED": {

"house_cond_def": "(Definition/House-cond, (Condition-variable/Presentation-
→˓type, (Image, Building/House)))",

"face_cond_def": "(Definition/Face-cond, (Condition-variable/Presentation-type,
→˓ (Image, Face)))"
}

Example 6 defines a condition variable called Presentation-type with two levels: House-cond and Face-cond. The def-
initions of House-cond and Face-cond both include the same Presentation-type Condition-variable so tools recognize
these as levels of the same variable and automatically extract the 2-factor experimental design.

Notice that the (Image, Building/House) tags are included both in the definition of the House-cond level of the
Presentation-type condition variable and in the tags for the event_type column value show_house. Similarly, the (Im-
age, Face) tags appear in both the definition of the Face-cond level of the Presentation-type condition variable and
in the tags for the event_type column value show_face. We have included these tags in both places because generally
the condition variable definitions are removed prior to searching for HED tags. The tags in the definitions define the
meaning of the conditions.

Example 7: The summary extracted when the JSON sidecar of Example 6 is used.

64 Chapter 6. History and Support

HED Resources, Release 0.0.1

{
"presentation-type": {
"name": "presentation-type",
"variable_type": "condition-variable",
"levels": 2,
"direct_references": 0,
"total_events": 5,
"number_type_events": 5,
"number_multiple_events": 0,
"multiple_event_maximum": 1,
"level_counts": {
"house-cond": 3,
"face-cond": 2

}
}

}

6.9.1.3 Direct vs defined approaches

Table 1 compares the two approaches for encoding experimental conditions and design in HED. Both approaches use
the Condition-variable tag. While direct condition variables (just using a Condition-variable tag without defining it)
is very easy, it provides limited information about meaning in downstream summaries. In general defined condition
variables, while more work, provide a more complete picture.

Table 1: Table 1: Comparison of direct versus definition conditions.
Ap-
proach

Advantages Disadvantages

Di-
rect

Easy to use–just a label.Can appear in summaries.Can
generate factor vectors.

Give no information about meaning.No lev-
els for condition variables.Limited information
about experimental design.Do not support event
temporal extent.

De-
fined

Better information in summaries.Encode condition vari-
ables with levels.Can give factor vectors for levels.Better
experimental design information.Can anchor events with
temporal extent.

Must give definitions.

It should be noted that other tags, particularly those in the HED Structural-property subtree such as Task can be
summarized and used as factor vectors in a way similar to Condition-variable.

6.9.1.4 Column vs row annotations

In this section, we look at a more complicated example based on the Wakeman-Henson face-processing dataset. This
dataset, which is available on OpenNeuro under accession number ds003645, was used in as a case study on HED
annotation described in the Capturing the nature of events paper. The experiment is based on a 3 x 3 x 2 experimental
design: face type x repetition status x key choice.

The experimental stimulus in each trial was the visual presentation of one of 3 possible types of images: a well-known
face, an unfamiliar face, and a scrambled face image. The type of face was randomized across trials.

The repetition status condition variable also had one of three possible values and indicated whether the stimulus image
had not been seen before (first show), was just seen in the previous trial (immediate repeat), or had been last seen several

6.9. HED conditions and design matrices 65

https://openneuro.org
https://www.sciencedirect.com/science/article/pii/S1053811921010387

HED Resources, Release 0.0.1

trials ago (delayed repeat). The repetition status was randomized across trials.

The final condition variable in the experimental design was the key assignment. In the right symmetry condition,
participants pressed the right mouse button to indicate that the presented face had above average symmetry, while in
the left symmetry condition, participants pressed the left mouse button to indicate that the presented face had above
average symmetry. The key assignment was held constant for each recording, but the key choice was counter-balanced
across participants.

Example 8 shows an excerpt from the event file of sub-002 run-1. (You may find it useful to look at the full event
file sub-002_task-FacePerception_run-1_events.tsv and the dataset’s JSON sidecar with full HED annotations: task-
facePerception_events.json

Example 8: An excerpt from the Wakeman-Henson face-processing dataset.

onset dura-
tion

event_type face_type rep_status trial rep_lag value stim_file

0.004 n/a setup_right_sym n/a n/a n/a n/a 3 n/a
24.2098 n/a show_face_initial unfamil-

iar_face
first_show 1 n/a 13 u032.bmp

25.0353 n/a show_circle n/a n/a 1 n/a 0 cir-
cle.bmp

25.158 n/a left_press n/a n/a 1 n/a 256 n/a
26.7353 n/a show_cross n/a n/a 2 n/a 1 cross.bmp
27.2498 n/a show_face unfamil-

iar_face
immedi-
ate_repeat

2 1 14 u032.bmp

27.8971 n/a left_press n/a n/a 2 n/a 256 n/a
28.0998 n/a show_circle n/a n/a 2 n/a 0 cir-

cle.bmp
29.7998 n/a show_cross n/a n/a 3 n/a 1 cross.bmp
30.3571 n/a show_face unfamil-

iar_face
first_show 3 n/a 13 u088.bmp

Example 8 illustrates two different ways of using defined conditions for encoding: inserting an event with temporal
extent or using column encoding.

The key assignment condition is marked by inserting an event with event_type equal to setup_right_sym at the beginning
of the file. As we shall see below, this event is annotated with having temporal extent, as defined by HED Onset and
Offset tags, so the condition is in effect until the event’s extent ends.

In the column strategy, an event file column represents the condition variable, and the values in that column represent
the levels. With this encoding, the condition variable is only applicable at a particular level when that level name
appears in the column. An n/a value in that column indicates the condition does not apply to that event.

Example 9 shows the portion of the task-facePerception_events.json that encodes information about the
setup_right_sym event found as the first event in the event file excerpt of Example 8. This excerpt only contains the
relevent definition and the relevant annotation.

Example 9: Excerpt of the JSON sidecar relevant to the setup_right_sym event.

{
"event_type": {
"HED": {
"setup_right_sym": "Experiment-structure, (Def/Right-sym-cond, Onset), (Def/

(continues on next page)

66 Chapter 6. History and Support

HED Resources, Release 0.0.1

(continued from previous page)

→˓Initialize-recording, Onset)"
}

},
"hed_def_conds": {
"HED": {
"right_sym_cond_def": "(Definition/Right-sym-cond, (Condition-variable/Key-

→˓assignment, ((Index-finger, (Right-side-of, Experiment-participant)), (Behavioral-
→˓evidence, Symmetrical)), ((Index-finger, (Left-side-of, Experiment-participant)),␣
→˓(Behavioral-evidence, Asymmetrical)), Description/Right index finger key press␣
→˓indicates a face with above average symmetry.))"

}
}

}

Only the event_type column is relevant for assembling the annotations for the first row of Example 8, since the other
annotated columns have n/a values. The assembled HED annotation for the first row of Example 8 is shown in Example
10.

Example 10: The HED annotation of the first row of Example 8.

“Experiment-structure, (Def/Right-sym-cond, Onset), (Def/Initialize-recording, Onset)”

HED represents events of temporal extent using HED definitions with the Onset and Offset tags grouped with a user-
defined term. The (Def/Right-sym-cond, Onset) specifies that an event defined by Right-sym-cond begins at the time-
marker represented by this row in the event file. This event continues until the end of the file or until an event marker
with (Def/Right-sym-cond, Offset) occurs. In this case, no Offset marker for Right-sym-cond appears in the file, so the
event represented by Right-sym-cond occurs over the entire recording.

The user-defined term is prefixed with Def/ and indicates what the event of temporal extent represents. If the definition
includes a Condition-variable, then the event represents the occurrence of that experimental condition. The user-defined
terms are usually defined in the events.json file located at the top-level of the BIDS dataset.

Example 11 shows a more readable form for the definition of Right-sym-cond.

Example 11: The contents of the definition for Right-sym-cond.

(
Definition/Right-sym-cond, (

Condition-variable/Key-assignment,
((Index-finger, (Right-side-of, Experiment-participant)), (Behavioral-evidence,␣

→˓Symmetrical)),
((Index-finger, (Left-side-of, Experiment-participant)), (Behavioral-evidence,␣

→˓Asymmetrical)),
Description/Right index finger key press indicates a face with above average␣

→˓symmetry.
)

)

The primary use of the definitions for condition variables is to encode the experimental design in an actionable format.
Thus, as a general practice, Defs representing condition variables are removed prior to searching for other tags to avoid

6.9. HED conditions and design matrices 67

HED Resources, Release 0.0.1

repeats. Notice that both Right-side-of and Left-side-of appear in the definition. Thus, if these Defs were included,
every event would have both left and right tags.

Once a dataset includes the appropriate annotations, HED tools can automatically extract the experimental design.
Example 12 shows the result of extraction of categorical factor vectors for the event file of Example 8.

Example 12: HED tools categorical form extraction of the design matrix for Example 8.

onset key-assignment face-type repetition-type
0.004 right-sym-cond n/a n/a
24.2098 right-sym-cond unfamiliar-face-cond first-show-cond
25.0353 right-sym-cond n/a n/a
25.158 right-sym-cond n/a n/a
26.7353 right-sym-cond n/a n/a
27.2498 right-sym-cond unfamiliar-face-cond immediate-repeat-cond
27.8971 right-sym-cond n/a n/a
28.0998 right-sym-cond n/a n/a
29.7998 right-sym-cond n/a n/a
30.3571 right-sym-cond unfamiliar-face-cond first-show-cond

In the categorical representation, HED uses the condition variable name as the column name. The level values appear in
the columns for event markers at which the condition variable at that level applies. Notice that right-sym-cond appears
in every row because it was used in an event that extended to the end of the file. On the other hand, the other condition
variables were encoded using columns and only appear when present in the column.

Note that if an event has multiple levels of the same condition, categorical and ordinal encoding cannot be used. Only
one-hot encoding supports multiple levels in the same event.

Example 13 below shows the condition variable summary that HED produces for the full sub-002_task-
FacePerception_run-1_events.tsv and JSON sidecar task-facePerception_events.json.

Example 13: The condition variable summary extracted from the full event file.

{
"key-assignment": {
"name": "key-assignment",
"variable_type": "condition-variable",
"levels": 1,
"direct_references": 0,
"total_events": 552,
"number_type_events": 552,
"number_multiple_events": 0,
"multiple_event_maximum": 1,
"level_counts": {
"right-sym-cond": 552

}
},
"face-type": {
"name": "face-type",
"variable_type": "condition-variable",
"levels": 3,
"direct_references": 0,

(continues on next page)

68 Chapter 6. History and Support

HED Resources, Release 0.0.1

(continued from previous page)

"total_events": 552,
"number_type_events": 146,
"number_multiple_events": 0,
"multiple_event_maximum": 1,
"level_counts": {
"unfamiliar-face-cond": 47,
"famous-face-cond": 49,
"scrambled-face-cond": 50

}
},
"repetition-type": {
"name": "repetition-type",
"variable_type": "condition-variable",
"levels": 3,
"direct_references": 0,
"total_events": 552,
"number_type_events": 146,
"number_multiple_events": 0,
"multiple_event_maximum": 1,
"level_counts": {
"first-show-cond": 75,
"immediate-repeat-cond": 36,
"delayed-repeat-cond": 35

}
}

}

The file has 552 events. Since the key-assignment condition variable with level right-sym-cond applies to every event
in this file, the number_type_events is also 552. On the other hand, the face-type condition variable is only applicable
in 146 events.

All the condition variables have number_multiple_events equal to 0, so any of the three possible encodings: categorical,
ordinal, or one-hot can be used.

6.9.2 Experimental design concepts

Traditional neuroimaging experiments are carefully designed to control and document the external conditions under
which the experiment is conducted. Often a few items such as the task or the properties of a stimulus are systematically
varied as the stimulus is presented and participant responses are recorded.

For example, in an experiment to test for differences in brain responses to pictures of houses versus pictures of faces,
the researcher would label time points in the recording corresponding to presentations of the respective pictures so that
differences in brain responses between the two types of pictures could be observed. An fMRI analysis might determine
which brain regions showed a significant response differential between the two types of responses. An EEG/MEG
analysis might also focus on the differences in time courses between the responses to the two types of images.

Thus, the starting point for many analyses is the association of labels corresponding to different experimental condi-
tions with time points in the data recording. In BIDS, this association is stored an events.tsv file paired with the
data recording, but this information may also be stored as part of the recording itself, depending on the technology and
the format of the recording.

6.9. HED conditions and design matrices 69

HED Resources, Release 0.0.1

6.9.2.1 Design matrices and factor variables

The type of information included for the experimental conditions and how this information is stored depends very much
on the experiment. Most analysis tools require a vector (sometimes called a factor vector) of elements associated with
the event markers for each type of experimental condition.

For linear modeling and other types of regression, these factor vectors are assembled into design matrix to use as input
for the analysis. Design matrices can also include other types of columns depending on the modeling strategy.

6.9.2.2 Types of condition encoding

Consider the simple example introduced above of an experiment which varies the stimuli between pictures of houses and
faces to measure differences in response. The following example shows three possible types of encodings (categorical,
ordinal, and one-hot) that might be used for this association. The table shows an excerpt from a putative events file,
with the onset column (required by BIDS) containing the time of the event marker relative to the start of the associated
data recording. The duration column (also required by BIDS) contains the duration of the image presentation in seconds.

Example 14: Illustration of categorical and one-hot encoding of categorical variables.

onset duration categorical ordinal one_hot.house one_hot.face
2.010 0.1 house 1 1 0
3.210 0.1 house 1 1 0
4.630 0.1 face 2 0 1
6.012 0.1 house 1 1 0
7.440 0.1 face 2 0 1

The categorical encoding assigns laboratory-specific names to the different types of stimuli. In theory, this categorical
column consisting of the strings house and face could be used as a factor vector or as part of a design matrix for
regression. However, many analysis tools require that these names be assigned numerical values.

The ordinal encoding assigns an arbitrary sequence of numbers corresponding to the unique values. If there are only
2 values, the values -1 and 1 are often used. Ordinal encodings impose an order based on the values chosen, which
may have undesirable affects on the results of analyses such as regression if the ordering/relative sizes do not reflect
the properties of the encoded experimental conditions.

In Example 14, the experimental conditions houses and faces do not have an ordering/size relationship reflected by
the encoding (house=1, face=2). In addition, neither categorical nor ordinal encoding can represent items falling into
multiple categories of the same condition at the same time. For these reasons, many statistical tools require one-hot
encoding.

In one-hot encoding, each possible value of the condition is represented by its own column with 1’s representing the
presence of that condition value and experimental conditions and 0’s otherwise. One-hot encodes all values without
bias and allows for a given event to be a member of multiple categories. This representation is required for many
machine-learning models. A disadvantage is that it can generate a large number of columns if there are many unique
categorical values. It can also cause a problem if not all files contain the same values, as then different files may have
different columns.

70 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.10 File remodeling quickstart

This tutorial works through the process of restructuring tabular (.tsv) files using the HED file remodeling tools. These
tools particularly useful for creating event files from information in experimental logs and for restructuring event files
to enable a particular analysis.

The tools, which are written in Python, are designed to be run on an entire dataset. This dataset can be in BIDS (Brain
Imaging Data Structure), Alternative users can specify files with a particular suffix and extension appearing in a
specified directory tree. The later format is useful for restructuring that occurs early in the experimental process, for
example, during the conversion from the experimental control software formats.

The tools can be run using a command-line script, called from a Jupyter notebook, or run using online tools. This
quickstart covers the basic concepts of remodeling and develops some basic examples of how remodeling is used. See
the File remodeling tools guide for detailed descriptions of the available operations.

• What is remodeling?

• The remodeling process

• JSON remodeling files

– Basic remodel operation syntax

– Applying multiple remodel operations

– More complex remodeling

– Remodeling file locations

• Using the remodeling tools

– Online tools for debugging

– The command-line interface

– Jupyter notebooks for remodeling

6.10.1 What is remodeling?

Although the remodeling process can be applied to any tabular file, they are most often used for restructuring event
files. Event files, which consist of identified time markers linked to the timeline of the experiment, provide a crucial
bridge between what happens in the experiment and the experimental data.

Event files are often initially created using information in the log files generated by the experiment control software.
The entries in the log files mark time points within the experimental record at which something changes or happens
(such as the onset or offset of a stimulus or a participant response). These event files are then used to identify portions
of the data corresponding to particular points or blocks of data to be analyzed or compared.

Remodeling refers to the process of file restructuring including creating, modifying, and reorganizing tabular files
in order to disambiguate or clarify their information to enable or streamline their analysis and/or further distribution.
HED-based remodeling can occur at several stages during the acquisition and processing of experimental data as shown
in this schematic diagram:

6.10. File remodeling quickstart 71

https://bids.neuroimaging.io/
https://bids.neuroimaging.io/

HED Resources, Release 0.0.1

.

In addition to restructuring during initial structuring of the tabular files, further event file restructuring may be useful
when the event files are not suited to the requirements of a particular analysis. Thus, restructuring can be an iterative
process, which is supported by the HED Remodeling Tools for datasets with tabular event files.

The following table gives a summary of the tools available in the HED remodeling toolbox.

72 Chapter 6. History and Support

HED Resources, Release 0.0.1

Table 2: Summary of the HED remodeling operations for tabular files.
Cate-
gory

Operation Example use case

clean-up

remove_columns Remove temporary columns created during restructuring.

remove_rows Remove rows with a particular value in a specified column.

rename_columns Make columns names consistent across a dataset.

reorder_columns Make column order consistent across a dataset.

factor

factor_column Extract factor vectors from a column of condition variables.

factor_hed_tags Extract factor vectors from search queries of HED annotations.

factor_hed_type Extract design matrices and/or condition variables.

restruc-
ture

merge_consecutive Replace multiple consecutive events of the same typewith one event of longer
duration.

remap_columns Create m columns from values in n columns (for recoding).

split_rows Split trial-encoded rows into multiple events.

summa-
rization

summa-
rize_column_names

Summarize column names and order in the files.

summa-
rize_column_values

Count the occurrences of the unique column values.

summa-
rize_definitions

Summarize definitions used and report inconsistencies.

summa-
rize_hed_tags

Summarize the HED tags present in the HED annotations for the dataset.

summa-
rize_hed_type

Summarize the detailed usage of a particular type tag such as Condition-variable
or Task (used to automatically extract experimental designs).

summa-
rize_hed_validation

Validate the data files and report any errors.

summa-
rize_sidecar_from_events

Generate a sidecar template from an event file.

The clean-up operations are used at various phases of restructuring to assure consistency across files in the dataset.

The factor operations produce column vectors of the same length as the number of rows in a file in order to encode con-
dition variables, design matrices, or the results of other search criteria. See the HED conditions and design matrices
for more information on factoring and analysis.

The restructure operations modify the way that files represent information.

6.10. File remodeling quickstart 73

HED Resources, Release 0.0.1

The summarization operations produce dataset-wide and individual file summaries of various aspects of the data.

More detailed information about the remodeling operations can be found in the File remodeling tools guide.

6.10.2 The remodeling process

Remodeling consists of applying a list of operations to a tabular file to restructure or modify the file in some way. The
following diagram shows a schematic of the remodeling process.

Initially, the user creates a backup of the selected files. This backup process is performed only once, and the results are
stored in the derivatives/remodel/backups subdirectory of the dataset.

Restructuring applies a sequence of remodeling operations given in a JSON remodeling file to produce a final result. By
convention, we name these remodeling instruction files _rmdl.json and store them in the derivatives/remodel/
remodeling_files directory relative to the dataset root directory.

The restructuring always proceeds by looking up each data file in the backup and applying the transformation to the
backup before overwriting the non-backed up version.

The remodeling file provides a record of the operations performed on the file starting with the original file. If the user
detects a mistake in the transformation instructions, he/she can correct the remodeling JSON file and rerun.

Usually, users will use the default backup, run the backup request once, and work from the original backup. However,
user may also elect to create a named backup, use the backup as a checkpoint mechanism, and develop scripts that use
the check-pointed versions as the starting point. This is useful if different versions of the events files are needed for
different purposes.

6.10.3 JSON remodeling files

The operations to restructure a tabular file are stored in a remodel file in JSON format. The file consists of a list of
JSON dictionaries.

74 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.10.3.1 Basic remodel operation syntax

Each dictionary specifies an operation, a description of the purpose, and the operation parameters. The basic syntax of
a remodeler operation is illustrated in the following example which renames the trial_type column to event_type.

Example of a remodeler operation.

{
"operation": "rename_columns",
"description": "Rename a trial type column to more specific event_type",
"parameters": {

"column_mapping": {
"trial_type": "event_type"

},
"ignore_missing": true

}
}

Each remodeler operation has its own specific set of required parameters that can be found under File remodeling tools.
For rename_columns, the required operations are column_mapping and ignore_missing. Some operations also have
optional parameters.

6.10.3.2 Applying multiple remodel operations

A remodel JSON file consists of a list of one or remodel operations, each specified in a dictionary. These operations
are performed by the remodeler in the order they appear in the file. In the example below, a summary is performed
after renaming, so the result reflects the new column names.

An example JSON remodeler file with multiple operations.

[
{

"operation": "rename_columns",
"description": "Rename a trial type column to more specific event_type.",
"parameters": {

"column_mapping": {
"trial_type": "event_type"

},
"ignore_missing": true

}
},
{

"operation": "summarize_column_names",
"description": "Get column names across files to find any missing columns.",
"parameters": {

"summary_name": "Columns after remodeling",
"summary_filename": "columns_after_remodel"

}
}

]

6.10. File remodeling quickstart 75

HED Resources, Release 0.0.1

By stacking operations you can make several changes to a data file, which is important because the changes are always
applied to a copy of the original backup. If you are planning new changes to the file, note that you are always changing
a copy of the original backed up file, not a previously remodeled .tsv.

6.10.3.3 More complex remodeling

This section discusses a complex example using the sub-0013_task-stopsignal_acq-seq_events.tsv events file of
AOMIC-PIOP2 dataset available on OpenNeuro as ds002790. Here is an excerpt of the event file.

Excerpt from an event file from the stop-go task of AOMIC-PIOP2 (ds002790).

onset dura-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex

0.0776 0.5083 go n/a 0.565 correct right

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

9.5856 0.5084 go n/a 0.45 correct right fe-
male

13.5939 0.5083 succes-
ful_stop

0.2 n/a n/a n/a fe-
male

17.1021 0.5083 unsucces-
ful_stop

0.25 0.633 correct left male

21.6103 0.5083 go n/a 0.443 correct left male

This event file corresponds to a stop-signal experiment. Participants were presented with faces and had to decide the
sex of the face by pressing a button with left or right hand. However, if a stop signal occurred before this selection, the
participant was to refrain from responding.

The structure of this file corresponds to the BIDS format for event files. The first column, which must be called onset
represents the time from the start of recording in seconds of the temporal marker represented by that row in the file. In
this case that temporal marker represents the presentation of a face image.

Notice that the stop_signal_delay and response_time columns contain information about additional events (when a trial
stop signal was presented and when the participant pushed a button). These events are encoded implicitly as offsets
from the presentation of the go signal. Each row is the file encodes information for an entire trial rather than what
occurred at a single temporal marker. This strategy is known as trial-level encoding.

Our goal is to represent all the trial events (e.g., go signal, stop signal, and response) in separate rows of the event file
using the split_rows restructuring operation. The following example shows the remodeling operations to perform the
splitting.

Example of split_rows operation for the AOMIC stop signal task.

[
{

"operation": "split_rows",
"description": "Split response event from trial event based on response_time␣

→˓column.",
"parameters": {

"anchor_column": "trial_type",
(continues on next page)

76 Chapter 6. History and Support

https://openneuro.org
https://bids.neuroimaging.io/

HED Resources, Release 0.0.1

(continued from previous page)

"new_events": {
"response": {

"onset_source": ["response_time"],
"duration": [0],
"copy_columns": ["response_accuracy", "response_hand"]

},
"stop_signal": {

"onset_source": ["stop_signal_delay"],
"duration": [0.5],
"copy_columns": []

}
},
"remove_parent_row": false

}
}

]

The example uses the split_rows operation to convert this file from trial encoding to event encoding. In trial encoding
each event marker (row in the event file) represents all the information in a single trial. Event markers such as the
participant’s response key-press are encoded implicitly as an offset from the stimulus presentation. while event encoding
includes event markers for each individual event within the trial.

The Split rows explanation under File remodeling tools shows the required parameters for the split_rows operation.
The required parameters are anchor_column, new_events, and remove_parent_row.

The anchor_column is the column we want to add new events corresponding to the stop signal and the response. In this
case we are going to add events to an existing column: trial_type. The new events will be in new rows and the existing
rows will not be overwritten because remove_parent_event is false. (After splitting we may want to rename trial_type
to event_type since the individual rows in the data file no longer represent trials, but individual events within the trial.)

Next we specify how the new events are generated in the new_events dictionary. Each new event has a name, which is
a key in the new_events dictionary. For each key is associated with a dictionary specifying the values of the following
parameters.

• onset_source

• duration

• copy_columns`

The onset_source is a list indicating how to calculate the onset for the new event relative to the onset of the anchor
event. The list contains any combination of column names and numerical values, which are evaluated and added to the
onset value of the row being split. Column names are evaluated to the row values in the corresponding columns.

In our example, the response time and stop signal delay are calculated relative to the trial’s onset, so we only need to
add the value from the respective column. Note that these new events do not exist for every trial. Rows where there
was no stop signal have an n/a in the stop_signal_delay column. This is processed automatically, and remodeler does
not create new events when any items in the onset_source list is missing or n/a.

The duration specifies the duration for the new events. The AOMIC data did not measure the durations of the button
presses, so we set the duration of the response event to 0. The AOMIC data report indicates that the stop signal lasted
500 ms.

The copy columns indicate which columns from the parent event should be copied to the newly-created event. We
would like to transfer the response_accuracy and the response_hand information to the response event.

The final remodeling file can be found at: finished json remodeler

6.10. File remodeling quickstart 77

HED Resources, Release 0.0.1

6.10.3.4 Remodeling file locations

The remodeling tools expect the full path for the JSON remodeling operation file to be given when the remodeling is
executed. However, it is a good practice to include all remodeling files used with the dataset. The JSON remodeling
operation files are usually located in the derivatives/remodel/remodeling_files subdirectory below the dataset
root, and have file names ending in _rmdl.json.

The backups are always in the derivatives/remodel/backups subdirectory under the dataset root. Summaries
produced by the restructuring tools are located in derivatives/remodel/summaries.

In the next section we will go over several ways to call the remodeler.

6.10.4 Using the remodeling tools

The remodeler can be called in a number of ways including using online tools and from the command line. The
following sections explain various ways to use the available tools.

6.10.4.1 Online tools for debugging

Although the event restructuring tools are designed to be run on an entire dataset, you should consider working with
a single data file during debugging. The HED online tools provide support for debugging your remodeling script and
for seeing the effect of remodeling on a single data file before running on the entire dataset. You can access these tools
on the HED tools online tools server.

To use the online remodeling tools, navigate to the events page and select the Execute remodel script action. Browse
to select the data file to be remodeled and the JSON remodel file containing the remodeling operations. The following
screenshot shows these selections for the split rows example of the previous section.

78 Chapter 6. History and Support

https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

Press the Process button to complete the action. If the remodeling script has errors, the result will be a downloaded
text file with the errors identified. If the remodeling script is correct, the result will be a data file with the remodeling
transformations applied. If the remodeling script contains summarization operations, the result will be a zip file with
the modified data file and the summaries included.

If you are using one of the remodeling operations that relies on HED tags, you will also need to upload a suitable JSON
sidecar file containing the HED annotations for the data file if you turn the Include summaries option on.

6.10. File remodeling quickstart 79

HED Resources, Release 0.0.1

6.10.4.2 The command-line interface

After installing the remodeler, you can run the tools on a full BIDS dataset, or on any directory using the command-line
interface using run_remodel_backup, run_remodel, and run_remodel_restore. A full overview of all arguments
is available at File remodeling tools.

The run_remodel_backup is usually run only once for a dataset. It makes the baseline backup of the event files to
assure that nothing will be lost. The remodeling always starts from the backup files.

The run_remodel restores the data files from the corresponding backup files and then executes remodeling operations
from a JSON file. A sample command line call for run_remodel is shown in the following example.

Command to run a summary for the AOMIC dataset.

python run_remodel /data/ds002790 /data/ds002790/derivatives/remodel/remodeling_files/
→˓AOMIC_summarize_rmdl.json \
-b -s .txt -x derivatives

The parameters are as follows:

• data_dir - (Required first argument) Root directory of the dataset.

• model_path - (Required second argument) Path of JSON file with remodeling operations.

• -b - (Optional) If present, assume BIDS formatted data.

• -s - (Optional) list of formats to save summaries in.

• -x - (Optional) List of directories to exclude from event processing.

There are three types of command line arguments:

Positional arguments, Named arguments, and Named arguments with values.

The positional arguments, data_dir and model_path are not optional and must be the first and second arguments to
run_remodel. The named arguments (with and without values) are optional. They all have default values if omitted.

The -b option is a named argument indicating whether the dataset is in BIDS format. If in BIDS format, the remodeling
tools can extract information such as the HED schema and the HED annotations from the dataset. BIDS data file names
are unique, which is convenient for reporting summary information. Name arguments are flags– their presence indicates
true and absence indicates false.

The -s and -x options are examples of named arguments with values. The -s .txt specifies that summaries should
be saved in text format. The -x derivatives indicates that the derivatives subdirectory should not be processed
during remodeling.

This script can be run multiple times without doing backups and restores, since it always starts with the backed up files.

The first argument of the command line scripts is the full path to the root directory of the dataset. The run_remodel
requires the full path of the json remodeler file as the second argument. A number of optional key-value arguments are
also available.

After the run_remodel finishes, it overwrites the data files (not the backups) and writes any requested summaries in
derivatives/remodel/summaries.

The summaries will be written to /data/ds002790/derivatives/remodel/summaries folder in text format. By
default, the summary operations will return both.

The summary file lists all different column combinations and for each combination, the files with those columns.
Looking at the different column combinations you can see there are three, one for each task that was performed for this
dataset.

80 Chapter 6. History and Support

HED Resources, Release 0.0.1

Going back to the split rows example of remodeling, we see that splitting the rows into multiple rows only makes sense
if the event files have the same columns. Only the event files for the stop signal task contain the stop_signal_delay
column and the response_time column. The summarizing the column names across the dataset allows users to check
whether the column names are consistent across the dataset. A common use case for BIDS datasets is that the event
files have a different structure for different tasks.
The -t command-line option allows users to specify which tasks to perform remodeling on. Using this option allows
users to select only the files that have the specified task names in their filenames.

Now you can try out the split_rows on the full dataset!

6.10.4.3 Jupyter notebooks for remodeling

Three Jupyter remodeling notebooks are available at Jupyter notebooks for remodeling.

These notebooks are wrappers that create the backup as well as run restructuring operations on data files. If you do not
have access to a Jupyter notebook facility, the article Six easy ways to run your Jupyter Notebook in the cloud discusses
various no-cost options for running Jupyter notebooks online.

6.11 HED schema developer’s guide

HED annotations consist of comma-separated terms drawn from a hierarchically structured vocabulary called a HED
schema. The HED standard schema contains basic terms that are common across most human neuroimaging, behav-
ioral, and physiological experiments. The HED ecosystem also supports (HED library schemas) to expand the HED
vocabulary in a scalable manner to support specialized data.

Although you can create a private HED vocabulary for your

This guide describes how to begin developing your own schema.

This section describes how you can contribute to existing HED vocabularies or creating an entirely new one.

6.11.1 Setting up for schema development

Although schema developers work with HED schema in .mediawiki format for ease in editing, HED tools generally
use XML versions of the HED schema.

Standard development process for XML schema.

1. Create or modify a .mediawiki file containing the schema.

2. Validate the .mediawiki file using the HED online tools.

3. Convert to .xml using the HED online tools.

4. View in the expandable schema viewer to verify.

6.11. HED schema developer’s guide 81

https://github.com/hed-standard/hed-examples/tree/main/hedcode/jupyter_notebooks/remodeling
https://www.dataschool.io/cloud-services-for-jupyter-notebook/
https://hedtools.ucsd.edu/hed/schema
https://hedtools.ucsd.edu/hed/schema
https://www.hedtags.org/display_hed.html

HED Resources, Release 0.0.1

6.11.2 Design principles for schema

All HED schema (both the standard and library schemas) must conform to certain design principles in addition to
properly validating.

Rules for HED schema design.

1. [Unique] Every term must be unique within the schema and must conform to the rules for HED schema terms.

2. [Meaningful] Schema terms should be readily understood by most users. The terms should not be ambiguous
and should be meaningful in themselves without reference to their position in the schema hierarchy.

3. [Organized] If possible, a schema sub-tree should have no more than 7 direct subordinate sub-trees.

4. [Orthogonal] Terms that are used independently of one another should be in different sub-trees (orthogonality).

5. [Sub-classed]Every term in the hierarchy satistifies the is-a relationship with its parent. In other words if B has
A as a parent in the schema hierarchy, then B is an example of A. Searching for A will also return B (search
generality).

As in Python programming, we anticipate that many HED schema libraries may be defined and used, in addition to
the base HED schema. Libraries allow individual research or clinical communities to annotate details of events in
experiments designed to answer questions of interest to particular to those communities.

Since it would be impossible to avoid naming conflicts across schema libraries that may be built in parallel by different
user communities, HED supports schema library namespaces. Users will be able to add library tags qualified with
namespace designators. All HED schemas, including library schemas, adhere to semantic versioning.

6.11.3 Defining a schema

A HED library schema is defined in the same way as the base HED schema except that it has an additional attribute
name-value pair, library="xxx" in the schema header. We will use as an illustration a library schema for driving.
Syntax details for a library schema are similar to those for the base HED schema. (See the HED schema format
specification for more details).

Example: Driving library schema (MEDIAWIKI template).

HED library="driving" version="1.0.0"
!# start schema
[... contents of the HED driving schema ...]

!# end schema
[... required sections specifying schema attribute definitions ...]

!# end hed

The required sections specifying the schema attributes are unit-class-specification, unit-modifier-specification, value-
class-specification, schema-attribute-specification, and property-specification.

Example: Driving library schema (XML template).

<?xml version="1.0" ?>
<HED library="driving" version="1.0.0">

[... contents of the HED_DRIVE schema ...]
</HED>

82 Chapter 6. History and Support

https://semver.org/
https://hed-specification.readthedocs.io/en/latest/03_Schema.html
https://hed-specification.readthedocs.io/en/latest/03_Schema.html

HED Resources, Release 0.0.1

The schema XML file should be saved as HED_driving_1.0.0.xml to facilitate specification in tools.

6.11.4 Schema namespaces

As part of the HED annotation process, users must associate a standard HED schema with their datasets. Users may
also include tags from an arbitrary number of additional library schemas. For each library schema used to annotate
a data recording, the user must associate a local name with the appropriate library schema name and version. Each
library must be associated with a distinct local name within a recording annotations. The local names should be strictly
alphabetic with no blanks or punctuation.

The user must pass information about the library schema and their associated local names to processing functions. HED
uses a standard method of identifying namespace elements by prefixing HED library schema tags with the associated
local names. Tags from different library schemas can be intermixed with those of the base schema. Since the node
names within a library must be unique, annotators can use short form as well as fully expanded tag paths for library
schema tags as well as those from the base-schema.

Example: Driving library schema example tags.

dp:Action/Drive/Change-lanes
dp:Drive/Change-lanes
dp:Change-lanes

A colon (:) is used to separate the qualifying local name from the remainder of the tag. Notice that Action also appears
in the standard HED schema. Identical terms may be used in a library schema and the standard HED schema. Use
of the same term implies a similar purpose. Library schema developers should try not to reuse terms in the standard
schema unless the intention is to convey a close or identical relationship.

6.11.5 Attributes and classes

In addition to the specification of tags in the main part of a schema, a HED schema has sections that specify unit classes,
unit modifiers, value classes, schema attributes, and properties. The rules for the handling of these sections for a library
schema are as follows:

6.11.5.1 Required sections

The required sections of a library schema are: the schema-specification, the unit-class-specification, the unit-modifier-
specification, the value-class-specification section, the schema-attribute-specification section, and the property-
specification. The library schema must include all required schema sections even if the content of these sections is
empty.

6.11. HED schema developer’s guide 83

HED Resources, Release 0.0.1

6.11.5.2 Relation to base schema

Any schema attribute, unit class, unit modifier, value class, or property used in the library schema must be specified in
the appropriate section of the library schema regardless of whether these appear in base schema. Validators check the
library schema strictly on the basis of its own specification without reference to another schema.

6.11.5.3 Schema properties

HED only supports the schema properties listed in Table B.2: boolProperty, unitClassProperty, unitModifierProperty,
unitProperty, and valueClassProperty.
If the library schema uses one of these in the library schema specification, then its specification must appear in the
property-specification section of the library schema.

6.11.5.4 Unit classes

The library schema may define unit classes and units as desired or include unit classes or units from the base schema.
Similarly, library schema may define unit modifiers or reuse unit modifiers from the base schema. HED validation and
basic analysis tools validate these based strictly on the schema specification and do not use any outside information for
these.

6.11.5.5 Value classes

The standard value classes (dateTimeClass[], nameClass, numericClass[], posixPath[], textClass[]) if used, should
have the same meaning as in the base schema. The hard-coded behavior associated with the starred ([*]) value classes
will be the same. Library schema may define additional value classes and specify their allowed characters, but no
additional hard-coded behavior will be available in the standard toolset. This does not preclude special-purpose tools
from incorporating their own behavior.

6.11.5.6 Schema attributes

The standard schema attributes (allowedCharacter, defaultUnits, extensionAllowed, recommended, relatedTag, re-
quireChild, required, SIUnit, SIUnitModifier, SIUnitSymbolModifier, suggestedTag, tagGroup, takesValue, topLevelT-
agGroup, unique, unitClass, unitPrefix, unitSymbol, valueClass) should have the same meaning as in the base schema.
The hard-coded behavior associated with the schema attributes will be the same. Library schema may define additional
schema attributes. They will be checked for syntax, but no additional hard-coded behavior will be available in the
standard toolset. This does not preclude special-purpose tools from incorporating their own behavior.

6.11.5.7 Syntax checking

Regardless of whether a specification is in the standard schema or a library schema, HED tools can perform basic
syntax checking.

Basic syntax checking for library schema.

1. All attributes used in the schema proper must be defined in the schema attribute section of the schema.

2. Undefined attributes cause an error in schema validation.

3. Similar rules apply to unit classes, unit modifiers, value classes, and properties.

4. Actual handling of the semantics by HED tools only occurs for entities appearing in the base schema.

84 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.11.5.8 Procedure for updating a schema.

Proposing changes

As modifications to the HED schema are proposed, they are added to the PROPOSED.md file for the respective
schema. As changes are accepted, they are incorporated into the prerelease version of the schema and added as part
of the prerelease CHANGES.md. These files are located in the prerelease subdirectory for the respective schema.
Examples of these files for the standard schema can be found in the standard schema prerelease directory. Expandable
html view of the prerelease HED schema

Upon final review, the new HED schema is released, the XML file is copied to the hedxml directory, the mediawiki
file is copied to the [**hed]

6.11.6 HED schema details

HED schema is the structured vocabulary from which HED annotations base on. HED annotations consist of comma-
separated path strings, selected from the schema. In the newest versions of HED, all individual nodes in the vocabulary
are unique, so users can annotate by simply giving the last node in the path string rather than the entire path string: Red
instead of Attribute/Sensory/Sensory-property/Visual/Color/CSS-color/Red-color/Red.

This repository contains the HED schema specification, where discussions on schema terms and syntax are held via
Github issue mechanism and where HED-supporting tools can find machine-readable format of the schema. The HED
schema is available in MediaWiki and XML.

The MediaWiki markdown format, stored in hedwiki, allows vocabulary developers to view and edit the vocabu-
lary tree using a human-readable markdown language available in Wikis and on GitHub repositories. In addition, an
expandable non-editable HTML viewer is available to help users explore the vocabulary.

All analysis and validation tools operate on an XML translation of the vocabulary markdown document, stored in
hedxml.

6.11.7 Further documentation

The documentation on this page refers specifically to the HED vocabulary and supporting tools. Additional documen-
tation is available on:

HED organization website

All of the HED software is open-source and organized into various repositories on the HED standards organization
website:

HED organization github repository

6.12 HED online tools

HED web-based tools are available directly through a browser from https://hedtools.ucsd.edu/hed or as RESTful ser-
vices from the same URL. These services do not require a login to use.

The tools are implemented in a Docker module and can be deployed locally provided that Docker is installed. See the
HED Web documentation about download and deployment information.

• Browser-based tools - web-based tools for HED.

• RESTful services - RESTful online HED services.

6.12. HED online tools 85

https://github.com/hed-standard/hed-schemas/tree/main/standard_schema/prerelease
https://www.hedtags.org/display_hed_prerelease.html
https://www.hedtags.org/display_hed_prerelease.html
https://github.com/hed-standard/hed-schemas/tree/main/standard_schema/hedxml
https://github.com/hed-standard/hed-specification/tree/master/hedwiki
http://www.hedtags.org/display_hed.html
https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://www.hedtags.org
https://github.com/hed-standard
https://hedtools.ucsd.edu/hed
https://hed-web.readthedocs.io/en/latest/

HED Resources, Release 0.0.1

6.12.1 Browser-based access

The HED browser-based tools are organized into the following pages, each focused on a particular type of file.

• Event online tools - validation, summary, and generation tools.

• Sidecar online tools - validation, transformation, extraction, and merging tools.

• Spreadsheet online tools - validation and transformation tools.

• String online tools - validation and transformation tools.

• Schema online tools - validation and conversion tools.

Many of the tools require that you provide a HED schema. Usually, you can do this by selecting one of the standard
HED versions using a pull-down menu, and the tool downloads this version from GitHub if the server doesn’t already
have it cached.

If you want to use a different version of HED, you can select the Other option from the pull-down and upload your own
HED schema.

The long form HED tag consists of the tag’s full path in the HED schema, while the short form consists only of the
tag’s leaf node in the schema and possibly a value. Intermediate form tags consist of a partial paths from a leaf node
to an intermediate node in the HED schema. Compliant HED tools should be able to handle any combination of short,
long, or intermediate form tags.

Several of the tools have an Expand defs option to indicate that definitions should be expanded. When this option
is in effect, tools should replace Def/xxx tags with an expanded definition for ‘xxx’ with a tag group of the form (Def-
expand/xxx, yyy) where ‘yyy’ is the actual definition contents of ‘xxx’.

Note: Expansion of definitions is independent of whether the individual HED tags are in long form or short form.

6.12.1.1 Events files

Events files are BIDS style tab-separated value files. The first line is always a header line giving the names of the
columns, which are used as keys to metadata in accompanying JSON sidecars.

The HED tools have four separate tools: validate, assemble annotations, generate sidecar template, and execute remodel
script.

Validate an events file

The validate tool for events is useful for debugging the HED annotations in your BIDS dataset while avoiding a full
BIDS-validation each time you make a change. The tool first validates the sidecar if present and then does a final
validation in combination with the events file.

Validate a BIDS-style events file

Steps:

• Select the Validate action.

• Set Check for warnings on if you want to include warnings.

• Select the HED version.

• Optionally upload a JSON sidecar file (.json).

• Upload an events file (.tsv).

• Click the Process button.

86 Chapter 6. History and Support

HED Resources, Release 0.0.1

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages.

The online events file validation tool is very useful for quick validation while developing your annotation. However,
the tool only validates a single events file with an accompanying sidecar. The tool does not validate multiple events
files at the same time, nor does the tool handle inherited sidecars.

The bids_validate_hed.ipynb Python Jupyter notebook is available for validating all the events files in a BIDS dataset
along with multiple sidecars. The Jupyter notebook handles validation with library schema.

Assemble annotations

Assembling HED annotations of a BIDS-style events file produces a two-column result file whose first column contains
the onsets of the original events file and the second column contains the fully assembled HED annotation for each event.

Assemble HED annotations for a BIDS-style events file.

Steps:

• Select the Assemble annotations action.

• Set Expand defs on if you want to include expanded definitions.

• Specify the HED version.

• Optionally upload a JSON sidecar file (.json).

• Upload the events file (.tsv).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns the
assembled .tsv events file.

The online tools do not allow the option of retaining other columns in the returned file. A more general alternative is
to use the remodeling tools through the interface.

Generate sidecar template

Generating a sidecar template file from the information in a single events file produces a .json sidecar template file
ready to be filled in with descriptions and HED annotations.

Generate a sidecar template from an events file.

Steps:

• Select the Generate sidecar template action.

• Upload the events file (.tsv). A list of the event file column names with number of unique values in each column
appears below the selection.

• In the left column of checkboxes select those corresponding to columns you wish to include in the template.

• In the right column of checkboxes, select those corresponding to columns for which you wish to supply individual
annotations for each unique value.

6.12. HED online tools 87

https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids/bids_validate_dataset.ipynb

HED Resources, Release 0.0.1

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable .json sidecar template file corresponding to the events file.

The online generation tool is very useful for constructing a sidecar template file, but the template is based only on the
particular events file used in the generation. For many BIDS datasets, this is sufficient for generating a complete tem-
plate. However, for datasets that have many types of events files, you will want to use the bids_generate_sidecar.ipynb
to generate a JSON sidecar based on all the events files in a BIDS dataset.

Execute remodel script

The HED remodeling tools provide an interface to nearly all the HED tools functionality without programming. To
use the tools, create a JSON file containing the commands that you wish to execute on the events file. Command are
available to do various transformations and summaries of events files as explained in the File remodeling quickstart
and the File remodeling tools.

Execute a remodel script.

Steps:

• Select the Execute remodel script action.

• Set Include summaries if you wish to get the summary output.

• Specify the HED version.

• Upload a JSON file containing the remodel commands.

• Optionally upload a JSON sidecar file (.json).

• Upload the events file (.tsv).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages. If there are no errors, the tool
returns a zip archive containing the transformed events file and any possible summaries that were generated.

6.12.1.2 Sidecar files

BIDS JSON sidecars have file names ending in events.json. These JSON files contain metadata and HED tags
applicable to associated events files.

88 Chapter 6. History and Support

https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids/bids_generate_sidecar.ipynb
https://www.hed-resources.org/en/latest/FileRemodelingQuickstart.html
https://www.hed-resources.org/en/latest/FileRemodelingTools.html

HED Resources, Release 0.0.1

Validate a sidecar

The validate tool for sidecars is useful for debugging the HED annotations in your BIDS dataset while avoiding a full
BIDS-validation each time you make a change. The tool validates a single JSON sidecar.

Validate a BIDS style JSON sidecar.

• Select the Validate action.

• Set Check for warnings to on if you want to include warnings.

• Select the HED version.

• Upload a JSON sidecar file (.json).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages.

The online validation tool is very useful for quick validation while developing your annotation. For datasets that have
all of their HED annotations in a single JSON sidecar in the dataset root directory, this is all that is needed.

However, if the sidecar is part of an inheritance chain, some of its definitions are externally defined, or the sidecar
contains tags from multiple HED schemas, you should use the bids_validate_dataset.ipynb Python Jupyter notebook
to validate the HED in your BIDS dataset.

Convert sidecar to long

The convert sidecar to long tool first does a preliminary validation of the sidecar to detect errors that prevent conversion
from being successful. You should always do a full validation prior to doing conversion.

If successful, the convert sidecar to long tool produces a new sidecar file with all the HED tags in full long-form. The
non-HED portions of the sidecar are the same as in the original file.

Convert a JSON sidecar HED tags to long form.

Steps:

• Select the Convert to long action.

• Set Expand defs to on if you want to include expanded definitions.

• Specify the HED version.

• Upload the JSON sidecar file (.json).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable converted JSON sidecar file.

6.12. HED online tools 89

https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids/bids_validate_dataset.ipynb

HED Resources, Release 0.0.1

Convert sidecar to short

The convert sidecar to short tool first does a preliminary validation of the sidecar to detect errors that prevent conversion
from being successful. You should always do a full validation prior to doing conversion.

If successful, the convert sidecar to short tool produces a new sidecar file with all the HED tags in short form, making
the sidecar easier to read and work with. The non-HED portions of the sidecar are the same as in the original file.

Convert a JSON sidecar HED tags to short form.

Steps:

• Select the Convert to short action.

• Set Expand defs to on if you want to include expanded definitions.

• Specify the HED version.

• Upload the JSON sidecar file (.json).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable converted JSON sidecar file.

Extract spreadsheet from sidecar

JSON sidecars are sometimes hard to edit, particularly if the annotations are complicated. The extract spreadsheet
from sidecar tool produces a 4-column .tsv file that can be edited with tools such as Excel. The first row of the
extracted spreadsheet contains the 4 column names: column_name, column_value, description and HED. See the
BIDS annotation quickstart for a tutorial on how to use the resulting spreadsheet for annotation.

Extract a 4-column spreadsheet from a JSON sidecar.

Steps:

• Select the Extract HED spreadsheet action.

• Upload the JSON sidecar file (.json).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable .tsv spreadsheet.

The bids_sidecar_to_spreadsheet.ipynb Python Jupyter notebook does the same operation.

90 Chapter 6. History and Support

https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids/bids_sidecar_to_spreadsheet.ipynb

HED Resources, Release 0.0.1

Merge a spreadsheet with a sidecar

This tool merges a 4-column tag spreadsheet with an existing JSON file to produce a JSON file that contains HED
annotations updated with the information from the spreadsheet. The spreadsheet can be in either tab-separated (.tsv)
or in Excel (.xlsx) format, but it must have the 4 column names: column_name, column_value, description and
HED.

You have the option of including the contents of each cell in the description column of the spreadsheet as a Descrip-
tion/xxx tag in the corresponding HED annotation.

See the BIDS annotation quickstart for a tutorial on how this works in practice.

Merge a 4-column spreadsheet with a JSON sidecar.

Steps:

• Select the Merge HED spreadsheet action.

• Set Include Description tags to on if you want to include descriptions.

• Upload the target JSON sidecar file (.json).

• Upload the spreadsheet to be merged (.tsv or .xlsx).

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable merged .json file.

The bids_merge_sidecar.ipynb Python Jupyter notebook does the same operation.

6.12.1.3 Spreadsheet files

Spreadsheets (either in Excel or tab-separated-value format) are convenient for organizing tags. Of particular interest
is the 4-column spreadsheet described in the BIDS annotation quickstart. However, the online tools support a more
general spreadsheet format, where any columns can contain HED tags. You can also specify prefixed columns —
columns in which a particular column has its values prefixed by a particular HED tag prior to processing. Often
prefixing is used for the Description tag.

These spreadsheets are not necessarily associated with particular datasets or events files. Rather, they are useful when
you are developing annotations in general.

Validate a spreadsheet

The validate tool for spreadsheets is useful for debugging HED annotations while you are developing them. The tool
validates a single spreadsheet worksheet, either in tab-separated value (.tsv) or Excel (.xlsx) format. The Excel
format supports spreadsheets containing multiple worksheets, but you must validate each worksheet individually. When
you select a spreadsheet or change the individual worksheet being considered, a list of column names will appear with
checkboxes on the left and text boxes on the right. Select the checkboxes for columns you wish to validate. Add a prefix
tag in the corresponding text box on the left, if the entry is to be prefixed by a particular tag before validating.

Validate a spreadsheet.

• Select the Validate action.

6.12. HED online tools 91

https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids/bids_merge_sidecar.ipynb
https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html

HED Resources, Release 0.0.1

• Set Check for warnings to on if you want to include warnings.

• Select the HED version.

• Upload a spreadsheet file (.tsv or .xlsx).

• Select a worksheet if necessary.

• Check the columns that contain HED information and should be validated.

• Enter relevant prefixes in the text boxes to the right of the column names.

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages.

Convert spreadsheet to long

The convert spreadsheet to long tool first does a preliminary validation to detect errors that prevent conversion from
being successful. You should always do a full validation prior to doing conversion.

As with other spreadsheet operations, you will have to provide information about which columns of the spreadsheet
contain HED tags that should be converted to long by checking the appropriate boxes on the left next to the desired
column names. This option does not have text boxes for prefixes.

If successful, the convert spreadsheet to long tool produces a new spreadsheet file with all the HED tags in full long-
form. The non-HED portions of the spreadsheet and the prefix-columns are the same as in the original file.

Convert a spreadsheet to long.

• Select the Convert to long action.

• Select the HED version.

• Upload a spreadsheet file (.tsv or .xlsx).

• Select a worksheet if necessary.

• Check the columns that contain HED information and should be validated.

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable spreadsheet with the HED tags converted to long.

Convert spreadsheet to short

The convert spreadsheet to short tool first does a preliminary validation to detect errors that prevent conversion from
being successful. You should always do a full validation prior to doing conversion.

As with other spreadsheet operations, you will have to provide information about which columns of the spreadsheet
contain HED tags that should be converted to short by checking the appropriate boxes on the left next to the desired
column names. This option does not have text boxes for prefixes.

If successful, the convert spreadsheet to short tool produces a new spreadsheet file with all the HED tags in short form.
The non-HED portions of the spreadsheet and the prefix-columns are the same as in the original file.

92 Chapter 6. History and Support

HED Resources, Release 0.0.1

Convert a spreadsheet to short form.

• Select the Convert to short action.

• Select the HED version.

• Upload a spreadsheet file (.tsv or .xlsx).

• Select a worksheet if necessary.

• Check the columns that contain HED information and should be validated.

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherise the tool returns a down-
loadable spreadsheet with the HED tags converted to short.

6.12.1.4 String online tools

While in the process of annotating or working with HED, you might find it convenient to do a quick check or conversion
of a HED string, particularly when you are building complex annotations. The HED string online tools are useful for
this.

Validate a HED string

The validate tool for HED strings validates a single HED string. The HED string may contain multiple HED tags and
parenthesized groups of HED tags.

Validate a HED string.

• Select the Validate action.

• Set Check for warnings to on if you want to include warnings.

• Select the HED version.

• Type or paste your HED string into the text box.

• Click the Process button.

Returns: Errors are displayed in the Results text box at the bottom of the page.

Convert a HED string to long

The convert string to long tool first does a preliminary validation of the string to detect errors that prevent conversion
from being successful. You should always do a full validation prior to doing conversion.

If successful, the convert to long tool displays the converted string in the Results text box at the bottom of the page.
You can then use copy or cut with paste to use the converted string in other documents.

Convert HED string to long form.

Steps:

6.12. HED online tools 93

HED Resources, Release 0.0.1

• Select the Convert to long action.

• Specify the HED version.

• Type or paste your HED string into the text box.

• Click the Process button.

Returns:
If there are any errors, the tool displays the error messages in the Results at the bottom of the page, otherwise the tool
displays the converted string in the Results textbox.

Convert HED string to short

The convert string to short tool first does a preliminary validation of the string to detect errors that prevent conversion
from being successful. You should always do a full validation prior to doing conversion.

If successful, the convert to short tool displays the converted string in the Results text box at the bottom of the page.
You can then use copy or cut with paste to use the converted string in other documents.

Convert HED string to short form.

Steps:

• Select the Convert to short action.

• Specify the HED version.

• Type or paste your HED string into the text box.

• Click the Process button.

Returns:
If there are any errors, the tool displays the error messages in the Results at the bottom of the page, otherwise the tool
displays the converted string in the Results textbox.

6.12.1.5 Schema online tools

HED schema tools are designed to assist HED schema developers and library schema developers in making sure that
their schema has the correct form. The schema tools also provide an easy mechanism for converting between .xml and
.mediawiki schema formats.

You can view standard schema using the expandable HED vocabulary viewer.

Validate a HED schema

The validation operation checks syntax as well as HED-3G compliance. Schema nodes must be unique and have a
specified format.

Validate a HED schema.

• Select the Validate action.

• Set Check for warnings on if you want to include warnings.

• Enter a schema URL or upload a schema file (.xml or .mediawiki) and select the corresponding option.

94 Chapter 6. History and Support

https://www.hedtags.org/display_hed.html

HED Resources, Release 0.0.1

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages.

Convert a HED schema

The convert HED schema tool allows you to convert between .mediawiki and .xml formats. All HED tools use the
.xml format, but the .mediawiki format is much easier to read and modify.

The HED specification GitHub repository maintains both versions of the schema.

Convert a HED schema.

• Select the Convert schema action.

• Enter a schema URL or upload a schema file (.xml or .mediawiki) and select corresponding option.

• Click the Process button.

Returns:
If there are any errors, the tool returns a downloadable .txt file of error messages, otherwise the tool returns a down-
loadable .xml or .mediawiki file.

6.12.2 HED RESTful services

HED supports a number of REST web services in support of HED including schema conversion and validation, JSON
sidecar validation, spreadsheet validation, and validation of a single BIDS events file with supporting JSON sidecar.

Short-to-long and long-to-short conversion of HED tags are supported for HED strings, JSON sidecars, BIDS-style
events files, and spreadsheets in .tsv or .xlsx format.

Support is also included for assembling the annotations for a BIDS-style events file with a JSON sidecar and for gen-
erating a template of a JSON sidecar from a BIDS events file.

The web_services directory in the hed-examples repository provides MATLAB examples of how to call these services
in MATLAB.

6.12.2.1 Service setup

The HED web services are accessed by making a request to the HED web server to obtain a CSRF access token for the
session and then making subsequent requests as designed. The steps are:

1. Send an HTTP get request to the HED CSRF token access URL.

2. Extract the CSRF token and returned cookie from the response to use in the headers of future post requests.

3. Send an HTTP post request in the format as described below and read the response.

The following table summarizes the location of the relevant URLs for online deployments of HED web-based tools and
services.

6.12. HED online tools 95

https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-examples/tree/main/hedcode/matlab_scripts/web_services

HED Resources, Release 0.0.1

Table 3: URLs for HED online services.
Service URL
Online HED tools https://hedtools.ucsd.edu/hed
CSRF token access https://hedtools.ucsd.edu/hed/services
Service request https://hedtools.ucsd.edu/hed/services_submit

6.12.2.2 Request format

HED services are accessed by passing a JSON dictionary of parameters in a request to the online server. All requests
are in JSON format and include a service name and additional parameters.

The service names are of the form target_command where target specifies the input data type (events, sidecar,
spreadsheet, string, or schema) and commandspecifies the service to be performed. For example, events_validate
indicates that a BIDS-style events file is to be validated. The exception to this naming rule is the get_services
command, which returns a list of all available services and their parameters.

All parameter values are passed as strings. The contents of file parameters are read into strings to be passed as part
of the request. The following example shows the JSON for a HED service request to validate a JSON sidecar. The
contents of the JSON file to be validated are abbreviated as "json file text".

Example: Request parameters for validating a JSON sidecar.

{
"service": "sidecar_validate",
"schema_version": "8.0.0",
"json_string": "json file text",
"check_for_warnings": "on"

}

The parameters are explained in the following table. Parameter values listed in square brackets (e,g, [a, b]) indicate
that only one of a or bshould be provided.

96 Chapter 6. History and Support

https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed/services
https://hedtools.ucsd.edu/hed/services_submit

HED Resources, Release 0.0.1

Table 4: Summary of HED ReST services
Service Parameters Descriptions
get_services none Returns a list of available services.
events_assemble events_string,
json_string,
[schema_version,
schema_string],
check_for_warnings,
expand_defs Assemble tags for each

event in a BIDS-style
events file into a single
HED string.
Returned data: a file of as-
sembled events as text or
an error file as text if er-
rors.

events_extract events_string Extract a template JSON sidecar based on the contents of the
events file.
Returned data: A JSON sidecar (template) if no errors.

events_validate events_string,
json_string,
[schema_string,
schema_url,
schema_version],
check_for_warnings Validate a BIDS-style

events file and its JSON
sidecar if provided.
Returned data: an error
file as text if errors.

sidecar_to_long json_string,
[schema_string,
schema_url,
schema_version], Convert a JSON sidecar

with all of its HED tags ex-
pressed in long form.
Returned data: a con-
verted JSON sidecar as
text or an error file as text
if errors.

sidecar_to_short json_string,
[schema_string,
schema_url,
schema_version] Convert a JSON sidecar

with all of its HED tags ex-
pressed in short form.
Returned data: a con-
verted JSON sidecar as
text or an error file as text
if errors.

sidecar_validate json_string,
[schema_string,
schema_url,
schema_version],
check_for_warnings Validate a BIDS-style

JSON sidecar.
Returned data: an error
file as text if errors.

spread-
sheet_to_long

spreadsheet_string,

[schema_string,
schema_url,
schema_version],
check_for_warnings,
column_x_check,
column_x_input,
has_column_names Convert a tag spreadsheet

(tsv only) to long form.
Returned data: a con-
verted tag spreadsheet as
text or an error file as text
if errors.

spread-
sheet_to_short

spreadsheet_string,

[schema_string,
schema_url,
schema_version],
check_for_warnings,
column_x_check,
column_x_input,
has_column_names Convert a tag spreadsheet

(tsv only) to short form.
Returned data: a con-
verted tag spreadsheet as
text or an error file as text
if errors.

spread-
sheet_validate

spreadsheet_string,

[schema_string,
schema_url,
schema_version],
check_for_warnings,
column_x_check,
column_x_input,
has_column_names, Validate a tag spreadsheet

(tab-separated format
only).
Returned data: an error
file as text if errors.

strings_to_long string_list,
[schema_string,
schema_url,
schema_version] Convert a list of strings to

long.
Returned data: an error
string or a list of strings in
long form.

strings_to_short string_list,
[schema_string,
schema_url,
schema_version] Convert errors or a list of

short-form strings.
Returned data: an error
string or a list of strings in
short form.

strings_validate hed_strings,
[schema_string,
schema_url,
schema_version] Validates a list of hed

strings and returns a list of
errors.
Returned data: an error
string or a list of strings in
short form.

6.12. HED online tools 97

HED Resources, Release 0.0.1

The following table gives an explanation of the parameters used for various services.

Table 5: Parameters for web services.
Key value Type Description
check_for_warnings boolean If true, check for warnings when processing.
column_x_check: boolean If present with value ‘on’, column x has HED tags.”.
column_x_input: string Contains the prefix prepended to column x if column x

has HED tags.
expand_defs boolean If true replaces def/XXX with def-expand/XXX grouped

with the definition content.
events_string string A BIDS events file as a string..
hed_columns list of numbers A list of HED string column numbers (starting with 1).
hed_schema_string string HED schema in XML format as a string.
hed_strings list of strings A list containing HED strings.
json_string string BIDS-style JSON events sidecar as a string.
json_strings string A list of BIDS-style JSON sidecars as strings.
schema_string string A HED schema file as a string.
schema_version string Version of HED to be accessed if relevant.
service string The name of the requested service.
spreadsheet_string string A spreadsheet tsv as a string.

6.12.2.3 Service responses

The web-services always return a JSON dictionary with four keys: service, results, error_type, and error_msg.
If error_type and error_msg are not empty, the operation failed, while if these fields are empty, the operation
completed. Completed operations always return their results in the results dictionary. Keys in the results dictionary
return as part of a HED web service response.

Table 6: The results dictionary.
Key Type Description
command string Command executed in response to the service request.
command_target string The type of data on which the command was executed..
data string A list of errors or the processed result.
schema_version string The version of the HED schema used in the processing.
msg_category string One of success, warning, or failure depending on the result.
msg string Explanation of the result of service processing.

The msg and msg_category pertain to contents of the response information. For example a msg_category of
warning in response to a validation request indicates that the validation completed and that the object that was vali-
dated had validation errors. In contrast, the error_type, and error_msg values are only for web service requests.
These keys indicate whether validation was able to take place. Examples of failures that would cause errors include the
service timing out or the service request parameters were incorrect.

98 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.13 CTagger GUI tagging tool

This tutorial is under development.

This tutorial takes you through the process of using CTagger, a user interface we developed to ease the process of
adding HED annotations. CTagger can be used as a standalone application or as part of the EEGLAB BIDS data
pipeline, making it easy to integrate the annotation pipeline mentioned in the Quick guide.

6.13.1 CTAGGER installation

6.13.1.1 CTAGGER standalone installation

Step 1:Check to see that you have Java installed.

Linux usually comes with OpenJDK (open source version of JDK) already installed. We have tested up to Java version
11 in Mac and Ubuntu.

Executing java -version on terminal should return something similar to: java version "1.8.0_211" or
openjdk version "11.0.11" 2021-04-20.

If Java is not installed, download and install Java Runtime Environment accordingly to your OS: https://www.oracle.
com/java/technologies/javase-jre8-downloads.html. You might be asked to create an Oracle account first before you
can download.

Step 2: Download CTagger.jar.

Step 3: Double-click on CTagger.jar to run.

If you’re on macOS you might need to update your Security settings to allow the app to run.

On Linux, you might need to make the jar executable first by executing chmod +x CTagger.jarwhile in the directory
containing the downloaded CTagger.

6.13.1.2 CTAGGER in EEGLAB

Install HEDTools plugin. Installation is done through the Manage EEGLAB extensions options on the EEGLAB GUI
File menu. The HEDTools options then appear under the EEGLAB Edit menu once you have loaded a dataset.

6.13.2 Loading BIDS event files

From the CTagger launcher window, users have the option to import either the BIDS event dictionary or event spread-
sheet to start tagging.

6.13. CTagger GUI tagging tool 99

https://www.oracle.com/java/technologies/javase-jre8-downloads.html
https://www.oracle.com/java/technologies/javase-jre8-downloads.html

HED Resources, Release 0.0.1

If Import BIDS event dictionary is selected, users will be prompted to select an events.json file. Any field (corre-
sponding to event column) with the key “Levels” will be interpreted as having categorical column, and each of the sub
levels will be considered as the categorical values of the field. All other fields will be considered as having continu-
ous values. If users import an events.tsv file via Import BIDS event spreadsheet, CTagger will ask users to specify
categorical fields. Unique categorical values of these fields will then be automatically extracted from the file.

Once importing is finished, users will see the main CTagger tagging interface. Users can toggle between different fields
using the Tagging field dropdown. For non-categorical fields, the left panel will contain a single item HED to which
the HED string containing the # symbol will be associated as explained above. For categorical fields, the Field levels
panel on the left will contains a list of the categorical values of the field. Users can choose any item on the list to start
tagging. Users specify HED tags on the right panel. CTagger will associated the HED string formed in the right panel
with the list item selected in the left panel. It is important that an item is selected from the Field levels list, otherwise
the HED string formed will not be saved.

100 Chapter 6. History and Support

HED Resources, Release 0.0.1

You are now ready to start tagging!

6.13.3 Adding HED annotation

Helping users construct HED annotations quickly and easily is the main goal of CTagger. New search capacity and
dynamic formatting features and the new schema-browsing view, help users to quickly compose HED annotations.

When the user types into the tag editor in CTagger, the character sequence is compared to all the schema nodes. Nodes
whose long-form tag match any part of the input sequence (case-insensitive) will be displayed (in long form) in the
CTagger Search Results box (just below the input cursor). Users can scroll through the resulting results display by
pressing the down-arrow key and clicking on Enter/return to select a tag to add to the HED annotation. Else, the user
can scroll through the results by mouse and click on a tag to select it. CTagger will always add the short-form tag,
replacing the input sequence, and the Search Results box will disappear. At any point, the user can make the Search
Results box disappear by pressing Esc key or by clicking on the text area outside the Search Results box.

The user can also open up the HED schema itself to browse for an appropriate tag in a more exploratory way, expanding
the hierarchical structure of the schema at any point of interest. Clicking on the Show HED schema button brings up
the schema display, in which any schema node that contains children is expandable/collapsible. Clicking on a node will
add its short-form tag to the current annotation. For nodes that take values, clicking on the # underneath the node will
add the node name, followed by a forward-slash (/) to the annotation. the user will then type in the value for that node.

In HED, tags can be grouped together to indicate that they modify each other and should be interpreted (e.g. during
search) as a whole unit. A tag group is specified by surrounding comma-separated tags in the same group with
parentheses. For example, the tag group (Triangle, Green) describes a green triangle. HED also allows nested tag
groups, for example to annotate something containing something else. Having multiple levels of nested tag groups
(hence lots of nested pairs of parentheses) can be difficult to parse visually. CTagger allows users to incorporate
new lines and tab indentation (using the Newline and Tab keys) to make their annotations more readable. Once the
annotation for an event or event type is complete, a final, comma-separated full-form HED string is created. CTagger
will automatically strip Newline and Tab characters from the HED string to produce a HED string format compatible
with any annotation destination file.

In CTagger, at any time during the annotation process, the user can view the current (if still incomplete) version of the
long-form HED string by going to File > Review all tags.

6.13. CTagger GUI tagging tool 101

HED Resources, Release 0.0.1

6.13.3.1 Validating your annotation

At any point of the tagging process users can validate their current HED string by clicking on the Validate
string button. Users can also validate annotation of the entire event file by clicking on the Validate all button.

102 Chapter 6. History and Support

HED Resources, Release 0.0.1

Users must fix any validation error before being able to finish tagging. Once done with their annotation, users can
then copy the HED string and paste it into an intended location (e.g., an event design file table), or can save the HED
annotation as a JSON dictionary file. Click Finish > Save to file and give a name to your json file; then select where
you want to save it. You’re done!

6.14 File remodeling tools

Remodeling refers to the process of transforming a tabular file into a different form in order to disambiguate the
information or to facilitate a particular analysis. The remodeling operations are specified in a JSON (.json) file,
giving a record of the transformations performed.

There are two types of remodeling operations: transformation and summarization. The transformation operations
modify the tabular files, while summarization produces an auxiliary information file but leaves the tabular files un-
changed.

The file remodeling tools can be applied to any tab-separated value (.tsv) file but are particularly useful for restruc-
turing files representing experimental events. Please read the File remodeling quickstart tutorials for an introduction
and basic use of the tools.

The file remodeling tools can be applied to individual files using the HED online tools or to entire datasets using the
remodel command-line interface either by calling Python scripts directly from the command line or by embedding
calls in a Jupyter notebook. The tools are also available as HED RESTful services. The online tools are particularly
useful for debugging.

This user’s guide contains the following topics:

• Overview of remodeling

• Installing the remodel tools

• Remodel command-line interface

• Remodel scripts

– Backing up files

– Remodeling files

– Restoring files

• Remodel with HED

• Remodel sample files

– Sample remodel file

– Sample remodel event file

– Sample remodel sidecar file

• Remodel transformations

– Factor column

– Factor HED tags

– Factor HED type

– Merge consecutive

– Remap columns

– Remove columns

6.14. File remodeling tools 103

https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

– Remove rows

– Rename columns

– Reorder columns

– Split rows

• Remodel summarizations

– Summarize column names

– Summarize column values

– Summarize definitions

– Summarize sidecar from events

– Summarize hed tags

– Summarize hed type

– Summarize hed validation

• Remodel implementation

6.14.1 Overview of remodeling

Remodeling consists of restructuring and/or extracting information from tab-separated value files based on a specified
list of operations contained in a JSON file.

Internally, the remodeling operations represent the tabular file using a Pandas DataFrame.

6.14.1.1 Transformation operations

Transformation operations, shown schematically in the following figure, are designed to transform an incoming tabular
file into a new DataFrame without modifying the incoming data.

Transformation operations are stateless and do not save any context information or affect future applications of the
transformation.

Transformations, themselves, do not have any output and just return a new, transformed DataFrame. In other words,
transformations do not operate in place on the incoming DataFrame, but rather, they create a new DataFrame containing
the result.

Typically, the calling program is responsible for reading and saving the tabular file, so the user can choose whether to
overwrite or create a new file.

See the remodeling tool program interface section for information on how to call the operations.

104 Chapter 6. History and Support

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

HED Resources, Release 0.0.1

6.14.1.2 Summarization operations

Summarization operations do not modify the input DataFrame but rather extract and save information in an internally
stored summary dictionary as shown schematically in the following figure.

The dispatcher that executes remodeling operations can be interrogated at any time for the state information contained
in the global summary dictionary and can save additional summary information at any time during execution. Usually
summaries are dumped at the end of processing to the derivatives/remodel/summaries subdirectory under the
dataset root.

Summarization operations may appear anywhere in the operation list, and the same type of summary may appear
multiple times under different names in order to track progress.

The dispatcher stores information from each uniquely named summarization operation as a separate summary dictio-
nary entry. Within its summary information, most summarization operations keep a separate summary for each indi-
vidual file and have methods to create an overall summary of the information for all the files that have been processed
by the summarization.

Summarization results are available in JSON (.json) and text (.txt) formats.

6.14.1.3 Available operations

The following table lists the available remodeling operations with brief example use cases and links to further docu-
mentation. Operations not listed in the summarize section are transformations.

6.14. File remodeling tools 105

HED Resources, Release 0.0.1

Table 7: Summary of the HED remodeling operations for tabular files.
Cate-
gory

Operation Example use case

clean-
up

remove_columns Remove temporary columns created during restructuring.

remove_rows Remove rows with n/a values in a specified column.

rename_columns Make columns names consistent across a dataset.

reorder_columns Make column order consistent across a dataset.

factor

factor_column Extract factor vectors from a column of condition variables.

factor_hed_tags Extract factor vectors from search queries of HED annotations.

factor_hed_type Extract design matrices and/or condition variables.

re-
struc-
ture

merge_consecutive Replace multiple consecutive events of the same typewith one event of longer du-
ration.

remap_columns Create m columns from values in n columns (for recoding).

split_rows Split trial-encoded rows into multiple events.

sum-
ma-
rize

summa-
rize_column_names

Summarize column names and order in the files.

summa-
rize_column_values

Count the occurrences of the unique column values.

summa-
rize_sidecar_from_events

Generate a sidecar template from an event file.

summa-
rize_hed_tags

Summarize the HED tags present in the HED annotations for the dataset.

summa-
rize_hed_type

Summarize the detailed usage of a particular type tag such as Condition-variable
or Task (used to automatically extract experimental designs).

summa-
rize_hed_validation

Validate the data files and report any errors.

The clean-up operations are used at various phases of restructuring to assure consistency across dataset files.

The factor operations produce column vectors with the same number of rows as the data file from which they were
calculated. They encode condition variables, design matrices, or other search criteria. See the HED conditions and
design matrices for more information on factoring and analysis.

The restructure operations modify the way in which a data file represents its information.

106 Chapter 6. History and Support

HED Resources, Release 0.0.1

The summarize operations produce dataset-wide summaries of various aspects of the data files as well as summaries
of the individual files.

6.14.2 Installing the remodel tools

The remodeling tools are available in the GitHub hed-python repository along with other tools for data cleaning and
curation. Although version 0.1.0 of this repository is available on PyPI as hedtools, the version containing the
restructuring tools (Version 0.2.0) is still under development and has not been officially released. However, the code
is publicly available on the develop branch of the hed-python repository and can be directly installed from GitHub
using pip:

pip install git+https://github.com/hed-standard/hed-python/@develop

The web services and online tools supporting remodeling are available on the HED online tools dev server. When
version 0.2.0 of hedtools is officially released on PyPI, restructuring will become available on the released HED
online tools. A docker version is also under development.

The following diagram shows a schematic of the remodeling process.

Initially, the user creates a backup of the specified tabular files (usually events.tsv files). This backup is a mirror of
the data files in the dataset, but is located in the derivatives/remodel/backups directory and never modified once
the backup is created.

Remodeling applies a sequence of operations specified in a JSON remodel file to the backup versions of the data files.
The JSON remodel file provides a record of the operations performed on the file. If the user detects a mistake in the
transformations, he/she can correct the transformation file and rerun the transformations.

Remodeling always runs on the original backup version of the file rather than the transformed version, so the transfor-
mations can always be corrected and rerun. It is possible to by-pass the backup, particularly if only using summarization
operations, but this is not recommended and should be done with care.

6.14. File remodeling tools 107

https://github.com/hed-standard/hed-python
https://pypi.org/
https://hedtools.ucsd.edu/hed_dev
https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

6.14.3 Remodel command-line interface

The remodeling toolbox provides Python scripts with command-line interfaces to create or restore backups and to apply
operations to the files in a dataset. The file remodeling tools may be applied to datasets that are in free form under a
directory root or that are in BIDS-format. Some operations use HED (Hierarchical Event Descriptors) annotations.
See the Remodel with HED section for a discussion of these operations and how to use them.

The remodeling command-line interface can be used from the command line, called from another Python program, or
used in a Jupyter notebooks. Example notebooks can be found in the Jupyter notebooks to support remodeling.

6.14.3.1 Calling remodel tools

The remodeling tools provide three Python programs for backup (run_remodel_backup), remodeling (run_remodel)
and restoring (run_remodel_restore) event files. These programs can be called from the command line or from
another Python program.

The programs use a standard command-line argument list for specifying input as summarized in the following table.

Table 8: Summary of command-line arguments for the remodeling pro-
grams.

Script
name

Arguments Purpose

run_remodel_backupdata_dir-e --extensions-f --file-suffix-n --backup-name-t --task-names-v --verbose-w --
work-dir-x --exclude-dirs

Create a
backup event
files.

run_remodeldata_dirmodel_path-b --bids-format-e --extensions-f --file-suffix-i --individual-
summaries-j --json-sidecar-n --backup-name-nb --no-backup-ns --no-summaries-nu
--no-update-r --hed-version-s --save-formats-t --task-names-v --verbose-w --work-dir-x
--exclude-dirs

Restructure
or summa-
rize the event
files.

run_remodel_restoredata_dir-n --backup-name-t --task-names-v --verbose-w --work-dir Restore a
backup of
event files.

All the scripts have a required argument, which is the full path of the dataset root (data_dir). The run_remodel
program has a required parameter which is the full path of a JSON file containing a specification of the remodeling
commands to be run.

6.14.3.2 Remodel command-line arguments

This section describes the arguments that are used for the remodeling command-line interface with examples and more
details.

Positional arguments

Positional arguments are required and must be given in the order specified.

data_dir

The full path of dataset root directory.

model_path

The full path of the JSON remodel file (for run_remodel only).

108 Chapter 6. History and Support

https://bids.neuroimaging.io/
https://github.com/hed-standard/hed-examples/tree/main/hedcode/jupyter_notebooks/remodeling

HED Resources, Release 0.0.1

Named arguments

Named arguments consist of a key starting with a hyphen and are possibly followed by a value. Named arguments can
be given in any order or omitted. If omitted, a specified default is used. Argument keys and values are separated by
spaces.

For argument values that are lists, the key is given followed by the items in the list, all separated by spaces.

Each command has two different forms of the key name: a short form (a single hyphen followed by a single character)
and a longer form (two hyphens followed by a more self-explanatory name). Users are free to use either form.

-b, --bids-format

If this flag present, the dataset is in BIDS format with sidecars. Tabular files are located using BIDS
naming.

-e, --extensions

This option is followed by a list of file extension(s) of the data files to process. The default is .tsv. Comma
separated tabular files are not permitted.

-f, --file-suffix

This option is followed by the suffix names of the files to be processed. For example events (the default)
captures files named events.tsv if the default extension is used. The filename without the extension
must end in one of the specified suffixes in order to be backed up or transformed.

-i, --individual-summaries

This option offers a choice among three options:

• separate: Individual summaries for each file in separate files in addition the overall summary.

• consolidated: Individual summaries written in the same file as the overall summary.

• none: Only an overall summary.

-j, --json-sidecar

This option is followed by the full path of the JSON sidecar with HED annotations to be applied during
the processing of HED-related remodeling operations.

-n, --backup-name

The name of the backup used for the remodeling (default: default_back).

-nb, --no-backup

If present, no backup is used. Rather operations are performed directly on the files.

-ns, --no-summaries

If present, no summary files are output.

-nu, --no-update

If present, the modified files are not output.

-r, --hed-versions

This option is followed by one or more HED versions. Versions of the standard schema are specified by
their semantic versions (e.g., 8.1.0), while library schema versions are prefixed by their library name
(e.g., score_1.0.0).

6.14. File remodeling tools 109

HED Resources, Release 0.0.1

If more than one HED schema version is given, all but one of the versions must start with an additional
namespace designator (e.g., sc:). At most one version can omit the namespace designator when multiple
schema are being used. In annotations, tags must start with the namespace designator of the corresponding
schema from which they were selected (e.g. sc:Sleep-modulator if the SCORE library was designated
by sc:score_1.0.0).

-s, --save-formats

This option is followed by the extensions (including .) of the formats in which to save summaries (default:
.txt .json).

-t, --task-names

The name(s) of the tasks to be included (for BIDS-formatted files only). When a dataset includes multiple
tasks, the event files are often structured differently for each task and thus require different transformation
files. This option allows the backups and operations to be restricted to a single task. If this option is
omitted, all tasks are used.

-v, --verbose

If present, more comprehensive messages documenting transformation progress are printed to standard
output.

-w, --work-dir

The path to the remodeling work root directory –both for backups and summaries (default: [data_root]/
derivatives/remodel). Use the -nb option if you wish to omit the backup (in run_remodel).

-x, --exclude-dirs

The directories to exclude when gathering the data files to process. For BIDS datasets, these are typically
derivatives, stimuli, and sourcecode. Any subdirectory with a path component named remodel is
automatically excluded from remodeling, as these directories are reserved for storing backup, state, and
result information for the remodeling process itself.

6.14.4 Remodel scripts

This section discusses the three main remodeling scripts with command-line interfaces to support backup, remodeling,
and restoring the tabular files used in the remodeling process. These scripts can be run from the command line or from
another Python program using a function call.

6.14.4.1 Backing up files

The run_remodel_backup Python program creates a backup of the specified files. The backup is always created
in the derivatives/remodel/backups subdirectory under the dataset root as shown in the following example for
the sample dataset eeg_ds003645s_hed_remodel, which can be found in the datasets subdirectory of the hed-
examples GitHub repository.

110 Chapter 6. History and Support

https://github.com/hed-standard/hed-examples
https://github.com/hed-standard/hed-examples

HED Resources, Release 0.0.1

The backup process creates a mirror of the directory structure of the source files to be backed up in the directory
derivatives/remodel/backups/backup_name/backup_root as shown in the figure above. The default backup
name is default_back.

In the above example, the backup has subdirectories sub-002 and sub-003 just like the main directory of the dataset.
These subdirectories only contain backups of the files to be transformed (by default files with names ending in events.
tsv).

In addition to the backup_root, the backup directory also contains a dictionary of backup files in the backup_lock.
json file. This dictionary is used internally by the remodeling tools. The backup should be created once and not
modified by the user.

The following example shows how to run the run_remodel_backup program from the command line to back up the
dataset located at /datasets/eeg_ds003645s_hed_remodel.

Example of calling run_remodel_backup from the command line.

python run_remodel_backup /datasets/eeg_ds003645s_hed_remodel -x derivatives stimuli

Since the -f and -e arguments are not given, the default file suffix and extension values apply, so only files of the
form events.tsv are backed up. The -x option excludes any source files from the derivatives and stimuli
subdirectories. These choices can be overridden using additional command-line arguments.

The following shows how the run_remodel_backup program can be called from a Python program or a Jupyter
notebook. The command-line arguments are given in a list instead of on the command line.

Example of Python code to call run_remodel_backup using a function call.

6.14. File remodeling tools 111

HED Resources, Release 0.0.1

import hed.tools.remodeling.cli.run_remodel_backup as cli_backup

data_root = '/datasets/eeg_ds003645s_hed_remodel'
arg_list = [data_root, '-x', 'derivatives', 'stimuli']
cli_backup.main(arg_list)

During remodeling, each file in the source is associated with a backup file using its relative path from the dataset root.
Remodeling is performed by reading the backup file, performing the operations specified in the JSON remodel file, and
overwriting the source file as needed.

Users can also create alternatively named backups by providing the -n argument with a backup name to the
run_remodel_backup program. To use backup files from another named backup, call the remodeling program with
the -n argument and the correct backup name. Named backups can provide checkpoints to allow the execution of
transformations to start from intermediate points.

NOTE: You should not delete backups, even if you have created multiple named backups. The backups provide useful
state and provenance information about the data.

6.14.4.2 Remodeling files

Remodeling consists of applying a sequence of operations from the remodel operation summary to successively trans-
form each backup file according to the instructions and to overwrite the actual files with the final result.

If the dataset has no backups, the actual data files rather than the backups are transformed. You are expected to create
the backup (just once) before running the remodeling operations. Going without backup is not recommended unless
you are only doing summarization operations.

The operations are specified as a list of dictionaries in a JSON file in the remodel sample files as discussed below.

Before running remodeling transformations on an entire dataset, consider using the HED online tools to debug your
remodeling operation file on a single file. The remodeling process always starts with the original backup files, so the
usual development path is to incrementally add operations to the end of your transformation JSON file as you develop
and test on a single file until you have the desired end result.

The following example shows how to run a remodeling script from the command line. The example assumes that the
backup has already been created for the dataset.

Example of calling run_remodel from the command line.

python run_remodel /datasets/eeg_ds003645s_hed_remodel /datasets/remove_extra_rmdl.json -
→˓x derivatives simuli

The script has two required arguments the dataset root and the path to the JSON remodel file. Usually, the JSON
remodel files are stored with the dataset itself in the derivatives/remodel/remodeling_files subdirectory, but
common scripts can be stored in a central place elsewhere.

The additional keyword option, -x in the example indicates that directory paths containing the component
derivatives or the component stimuli should be excluded. Excluded directories need not have their excluded
path component at the top level of the dataset. Subdirectory paths containing the remodel path component are auto-
matically excluded.

112 Chapter 6. History and Support

https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

The command-line interface can also be used in a Jupyter notebook or as part of a larger Python program by calling the
main function with the equivalent command-line arguments provided in a list with the positional arguments appearing
first.

The following example shows Python code to remodel a dataset using the command-line interface. This code can be
used in a Jupyter notebook or in another Python program.

Example Python code to call run_remodel using a function call.

import hed.tools.remodeling.cli.run_remodel as cli_remodel

data_root = '/datasets/eeg_ds003645s_hed_remodel'
model_path = '/datasets/remove_extra_rmdl.json'
arg_list = [data_root, model_path, '-x', 'derivatives', 'stimuli']
cli_remodel.main(arg_list)

6.14.4.3 Restoring files

Since remodeling always uses the backed up version of each data file, there is no need to restore these files to their
original state between remodeling runs. However, when finished with an analysis, you may want to restore the data
files to their original state.

The following example shows how to call run_remodel_restore to restore the data files from the default backup.
The restore operation restores all the files in the specified backup.

Example of calling run_remodel_restore from the command line.

python run_remodel_restore /datasets/eeg_ds003645s_hed_remodel

As with the other command-line programs, run_remodel_restore can be also called using a function call.

Example Python code to call run_remodel_restore using a function call.

import hed.tools.remodeling.cli.run_restore as cli_remodel

data_root = '/datasets/eeg_ds003645s_hed_remodel'
cli_remodel.main([data_root])

6.14. File remodeling tools 113

HED Resources, Release 0.0.1

6.14.5 Remodel with HED

HED (Hierarchical Event Descriptors) is a system for annotating data in a manner that is both human-understandable
and machine-actionable. HED provides much more detail about the events and their meanings, If you are new to
HED see the HED annotation quickstart. For information about HED’s integration into BIDS (Brain Imaging Data
Structure) see BIDS annotation quickstart.

Currently, five remodeling operations rely on HED annotations:

• factor_hed_tags

• factor_hed_type

• summarize_hed_tags

• summarize_hed_type

• summarize_hed_validation.

HED tags provide a mechanism for advanced data analysis and for extracting experiment-specific information from the
data files. However, since HED information is not always stored in the data files themselves, you may need to provide
a HED schema and a JSON sidecar.

The HED schema defines the allowed HED tag vocabulary, and the JSON sidecar associates HED annotations with the
information in the columns of the event files. If you are not using any of the HED operations in your remodeling, you
do not have to provide this information.

6.14.5.1 Extracting HED information from BIDS

The simplest way to use HED with run_remodel is to use the -b option, which indicates that the dataset is in BIDS
(Brain Imaging Data Structure) format.

BIDS is a standardized way of organizing neuroimaging data. HED and BIDS are well integrated. If you are new to
BIDS, see the BIDS annotation quickstart.

A HED-annotated BIDS dataset provides the HED schema version in the dataset_description.json file located
directly under the BIDS dataset root.

BIDS datasets must have filenames in a specific format, and the HED tools can locate the relevant JSON sidecars for
each data file based on this information.

6.14.5.2 Directly specifying HED information

If your data is already in BIDS format, using the -b option is ideal since the needed information can be located auto-
matically. However, early in the experimental process, your datafiles are not likely to be organized in BIDS format, and
this option will not be available if you want to use HED.

Without the -b option, the remodeling tools locate the appropriate files based on specified filename suffixes and ex-
tensions. In order to use HED operations, you must explicitly specify the HED versions using the -r option. The -r
option supports a list of HED versions if multiple HED schemas are used. For example: -r 8.1.0 sc:score_1.0.0
specifies that vocabulary will be drawn from standard HED Version 8.1.0 and from HED SCORE library version 1.0.0.
Annotations containing tags from SCORE should be prefixed with sc:. Note: both of the schemas can be viewed by
the HED Schema Browser.

Usually, annotators will consolidate HED annotations in a single JSON sidecar file located at the top-level of the dataset.
The path of this sidecar can be passed as a command-line argument using the -j option. If more than one JSON sidecar
file contains HED annotations, users will need to call the lower-level remodeling functions to perform these operations.

The following example illustrates a command-line call that passes both a HED schema version and the path to the JSON
file with the HED annotations.

114 Chapter 6. History and Support

https://bids.neuroimaging.io/
https://www.hedtags.org/display_hed.html

HED Resources, Release 0.0.1

Remodeling a non-BIDS dataset using HED.

python run_remodel /datasets/eeg_ds003645s_hed_remodel /datasets/summarize_conditions_
→˓rmdl.json \
-x derivatives simuli -r 8.1.0 -j /datasets/eeg_ds003645s_hed_remodel/task-
→˓FacePerception_events.json

Example Python code to use run_remodel on a non-BIDS dataset.

import hed.tools.remodeling.cli.run_remodel as cli_remodel

data_root = '/datasets/eeg_ds003645s_hed_remodel'
model_path = '/datasets/summarize_conditions_rmdl.json'
json_path = '/datasets/eeg_ds003645s_hed_remodel/task-FacePerception_events.json'
arg_list = [data_root, model_path, '-x', 'derivatives', 'stimuli', '-r' 8.1.0 '-j' json_
→˓path]
cli_remodel.main(arg_list)

6.14.6 Remodel error handling

Errors can occur during several stages in during remodeling and how they are handled depends on the type of error and
where the error occurs. Except for the validation summary, the underlying remodeling code raises exceptions for most
errors.

6.14.6.1 Errors in the remodel file

Each individual operation raises an exception if required parameters are missing or the values provided for the pa-
rameters are of the wrong type. However, the higher-level calling mechanisms provided through run_remodel call
the parse_operations static method provided by the Dispatcher to create a parsed operation list. This call either
returns a list of parsed operations or a list of parse errors for the operations in the list.

If there are any errors in the remodel file, no operations are run, but the errors for all operations in the list are reported.
This allows users to correct errors in all operations in one pass without any data modification. The HED online tools
are particularly useful for debugging the syntax and other issues in the remodeling process.

6.14.6.2 Execution-time remodel errors

When an error occurs during execution, an exception is raised. Exceptions are raised for invalid or missing files or if
a transformed file is unable to be rewritten due to improper file permissions. Each individual operation may also raise
an exception if the data file being processed does not have the expected information, such as a column with a particular
name.

Exceptions raised during execution cause the process to be terminated and no further files are processed.

6.14. File remodeling tools 115

https://hedtools.ucsd.edu/hed

HED Resources, Release 0.0.1

6.14.7 Remodel sample files

All remodeling operations are specified in a standardized JSON remodel input file. The following shows the contents of
the JSON remodeling file remove_extra_rmdl.json, which contains a single operation with instructions to remove
the value and sample columns from the data file if the columns exist.

6.14.7.1 Sample remodel file

A sample JSON remodeling file with a single remove_columns transformation operation.

[
{

"operation": "remove_columns",
"description": "Remove unwanted columns prior to analysis",
"parameters": {

"remove_names": ["value", "sample"],
"ignore_missing": true

}
}

]

Each operation is specified in a dictionary with three top-level keys: “operation”, “description”, and “parameters”. The
value of the “operation” is the name of the operation. The “description” value should include the reason this operation
was needed, not just a description of the operation itself. Finally, the “parameters” value is a dictionary mapping
parameter name to parameter value.

The parameters for each operation are listed in Remodel transformations and Remodel summarizations sections. An
operation may have both required and optional parameters. Optional parameters may be omitted if unneeded, but all
parameters are specified in the “parameters” section of the dictionary.

The remodeling JSON files should have names ending in _rmdl.json to more easily distinguish them from other JSON
files. Although these files can be stored anywhere, their preferred location is in the deriviatves/remodel/models
subdirectory under the dataset root so that they can provide provenance for the dataset.

6.14.7.2 Sample remodel event file

Several examples illustrating the remodeling operations use the following excerpt of the stop-go task from sub-
0013 of the AOMIC-PIOP2 dataset available on OpenNeuro as ds002790. The full event file is sub-0013_task-
stopsignal_acq-seq_events.tsv.

Excerpt from an event file from the stop-go task of AOMIC-PIOP2 (ds002790).

116 Chapter 6. History and Support

https://openneuro.org

HED Resources, Release 0.0.1

onset dura-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex

0.0776 0.5083 go n/a 0.565 correct right

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

9.5856 0.5084 go n/a 0.45 correct right fe-
male

13.5939 0.5083 succes-
ful_stop

0.2 n/a n/a n/a fe-
male

17.1021 0.5083 unsucces-
ful_stop

0.25 0.633 correct left male

21.6103 0.5083 go n/a 0.443 correct left male

6.14.7.3 Sample remodel sidecar file

For remodeling operations that use HED, a JSON sidecar is usually required to provide the necessary HED annotations.
The following JSON sidecar excerpt is used in several examples to illustrate some of these operations. The full JSON
file can be found at task-stopsiqnal_acq-seq_events.json.

Excerpt of JSON sidecar with HED annotations for the stop-go task of AOMIC-PIOP2.

{
"trial_type": {

"HED": {
"succesful_stop": "Sensory-presentation, Visual-presentation, Correct-action,

→˓ Image, Label/succesful_stop",
"unsuccesful_stop": "Sensory-presentation, Visual-presentation, Incorrect-

→˓action, Image, Label/unsuccesful_stop",
"go": "Sensory-presentation, Visual-presentation, Image, Label/go"

}
},
"stop_signal_delay": {

"HED": "(Auditory-presentation, Delay/# s)"
},

"sex": {
"HED": {

"male": "Def/Male-image-cond",
"female": "Def/Female-image-cond"

}
},
"hed_defs": {

"HED": {
"def_male": "(Definition/Male-image-cond, (Condition-variable/Image-sex,␣

→˓(Male, (Image, Face))))",
"def_female": "(Definition/Female-image-cond, (Condition-variable/Image-sex,␣

→˓(Female, (Image, Face))))"
}

}
}

6.14. File remodeling tools 117

HED Resources, Release 0.0.1

Notice that the JSON file has some keys (e.g., “trial_type”, “stop_signal_delay”, and “sex”) which also correspond to
columns in the events file. The “hed_defs” key corresponds to an extra entry in the JSON file that, in this case, provides
the definitions needed in the HED annotation.

HED operations also require the HED schema. Most of the examples use HED standard schema version 8.1.0.

6.14.8 Remodel transformations

6.14.8.1 Factor column

The factor_column operation appends factor vectors to tabular files based on the values in a specified file column. Each
factor vector contains a 1 if the corresponding row had that column value and a 0 otherwise. The factor_column is used
to reformat event files for analyses such as linear regression based on column values.

Factor column parameters

Parameters for the factor_column operation.

Parameter Type Description
column_name str The name of the column to be factored.
factor_values list Column values to be included as factors.
factor_names list Column names for created factors.

If column_name is not a column in the data file, a ValueError is raised.

If factor_values is empty, factors are created for each unique value in column_name. Otherwise, only factors for the
specified column values are generated. If a specified value is missing in a particular file, the corresponding factor
column contains all zeros.

If factor_names is empty, the newly created columns are of the form column_name.factor_value. Otherwise, the newly
created columns have names factor_names. If factor_names is not empty, then factor_values must also be specified
and both lists must be of the same length.

Factor column example

The factor_column operation in the following example specifies that factor columns should be created for succesful_stop
and unsuccesful_stop of the trial_type column. The resulting columns are called stopped and stop_failed, respectively.

A sample JSON file with a single factor_column transformation operation.

[{
"operation": "factor_column"
"description": "Create factors for the succesful_stop and unsuccesful_stop values."
"parameters": {

"column_name": "trial_type",
"factor_values": ["succesful_stop", "unsuccesful_stop"],
"factor_names": ["stopped", "stop_failed"]

(continues on next page)

118 Chapter 6. History and Support

HED Resources, Release 0.0.1

(continued from previous page)

}
}]

The results of executing this factor_column operation on the sample remodel event file are:

Results of the factor_column operation on the sampe data.

on-
set

du-
ra-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex stoppedstop_failed

0.0776 0.5083 go n/a 0.565 correct right fe-
male

0 0

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

0 1

9.5856 0.5084 go n/a 0.45 correct right fe-
male

0 0

13.59390.5083 succes-
ful_stop

0.2 n/a n/a n/a fe-
male

1 0

17.10210.5083 unsucces-
ful_stop

0.25 0.633 correct left male 0 1

21.61030.5083 go n/a 0.443 correct left male 0 0

6.14.8.2 Factor HED tags

The factor_hed_tags operation is similar to the factor_column operation in that it produces factor vectors containing
0’s and 1, which are appended to the returned DataFrame. However, rather than basing these vectors on values in
a specified column, the factors are computed by determining whether the assembled HED annotations for each row
satisfies a specified search query.

An example search query is whether the assembled HED annotation contains a particular HED tag. The HED search
guide tutorial discusses the HED search facility in more detail.

Factor HED tags parameters

Parameters for the factor_hed_tags operation.

Parameter Type Description
queries list A list of HED query strings.
query_names list A list of names for the resulting factor columns generated by the queries.
remove_types list Structural HED tags to be removed (usually Condition-variable and Task).
expand_context bool (Optional) Expand the context and remove Onse andOffset tags before the query.

The query_names list, which must be empty or the same length as queries, contains the names of the factor columns
produced by the search. If the query_names list is empty, the result columns are titled “query_1”, “query_2”, etc.

The remove_types and expand_context are not yet implemented, and hence ignored in the current release.

6.14. File remodeling tools 119

HED Resources, Release 0.0.1

Factor HED tags example

The factor_hed-tags operation in the following example produce two factor columns with 1’s where the HED string for
a row contains the Correct-action and Incorrect-action, respectively. The resulting factor columns are named
correct and incorrect, respectively.

A sample JSON file with a single factor_hed_tags transformation operation.

[{
"operation": "factor_hed_tags"
"description": "Create factors based on whether the event represented a correct or␣

→˓incorrect action.",
"parameters": {

"queries": ["correct-action", "incorrect-action"],
"query-names": ["correct", "incorrect"],
"remove-types": [],
"expand_context": false

}
}]

The results of executing this factor_hed-tags operation on the sample remodel event file using the sample remodel
sidecar file for HED annotations is:

Results of factor_hed_tags.

on-
set

dura-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex cor-
rect

incor-
rect

0.0776 0.5083 go n/a 0.565 correct right fe-
male

0 0

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

0 1

9.5856 0.5084 go n/a 0.45 correct right fe-
male

0 0

13.59390.5083 succes-
ful_stop

0.2 n/a n/a n/a fe-
male

1 0

17.10210.5083 unsucces-
ful_stop

0.25 0.633 correct left male 0 1

21.61030.5083 go n/a 0.443 correct left male 0 0

6.14.8.3 Factor HED type

The factor_hed_type operation produces factor columns based on values of the specified HED type tag. The most
common type is the HED Condition-variable tag, which corresponds to factor vectors based on the experimental design.
Other commonly use type tags include Task, Control-variable, and Time-block.

We assume that the dataset has been annotated using HED tags to properly document information such as experimen-
tal conditions, and focus on how such an annotated dataset can be used with remodeling to produce factor columns
corresponding to these type variables.

120 Chapter 6. History and Support

HED Resources, Release 0.0.1

For additional information on how to encode experimental designs using HED, see HED conditions and design ma-
trices.

Factor HED type parameters

Parameters for factor_hed_type operation.

Parameter Type Description
type_tag str HED tag used to find the factors (most commonly Condition-variable).
type_values list Values to factor for the type_tag.If empty, all values of that type_tag are used.

Factor HED type example

The factor_hed_type operation in the following example appends additional columns to each data file corresponding
to each possible value of each Condition-variable tag. The columns contain 1’s for rows corresponding to rows (e.g.,
events) for which that condition applies and 0’s otherwise.

A JSON file with a single factor_hed_type transformation operation.

[{
"operation": "factor_hed_type"
"description": "Factor based on the sex of the images being presented."
"parameters": {

"type_tag": "Condition-variable",
"type_values": []

}
}]

The results of executing this factor_hed-tags operation on the sample remodel event file using the sample remodel
sidecar file for HED annotations are:

Results of factor_hed_type.

6.14. File remodeling tools 121

HED Resources, Release 0.0.1

on-
set

du-
ra-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex Image-
sex.Female-
image-cond

Image-
sex.Male-
image-cond

0.07760.5083 go n/a 0.565 correct right fe-
male

1 0

5.57740.5083 un-
succes-
ful_stop

0.2 0.49 correct right fe-
male

1 0

9.58560.5084 go n/a 0.45 correct right fe-
male

1 0

13.59390.5083 succes-
ful_stop

0.2 n/a n/a n/a fe-
male

1 0

17.10210.5083 un-
succes-
ful_stop

0.25 0.633 correct left male 0 1

21.61030.5083 go n/a 0.443 correct left male 0 1

6.14.8.4 Merge consecutive

Sometimes a single long event in experimental logs is represented by multiple repeat events. The merge_consecutive
operation collapses these consecutive repeat events into one event with duration updated to encompass the temporal
extent of the merged events.

Merge consecutive parameters

Parameters for the merge_consecutive operation.

Parameter Type Description
column_name str The name of the column which is the basis of the merge.
event_code str, int, float The value in column_name that triggers the merge.
match_columns list Columns whose values must match to collapse events.
set_durations bool If true, set durations based on merged events.
ignore_missing bool If true, missing column_name or match_columns do not raise an error.

The first of the group of rows (each representing an event) to be merged is called the anchor for the merge. After the
merge, it is the only row in the group that remains in the data file. The result is identical to its original version, except
for the value in the duration column.

If the set_duration parameter is true, the new duration is calculated as though the event began with the onset of the first
event (the anchor row) in the group and ended at the point where all the events in the group have ended. This method
allows for small gaps between events and for events in which an intermediate event in the group ends after later events.
If the set_duration parameter is false, the duration of the merged row is set to n/a.

If the data file has other columns besides onset, duration and column column_name, the values in the other columns
must be considered during the merging process. The match_columns is a list of the other columns whose values must
agree with those of the anchor row in order for a merge to occur. If match_columns is empty, the other columns in each
row are not taken into account during the merge.

122 Chapter 6. History and Support

HED Resources, Release 0.0.1

Merge consecutive example

The merge_consecutive operation in the following example causes consecutive succesful_stop events whose
stop_signal_delay, response_hand, and sex columns have the same values to be merged into a single event.

A JSON file with a single merge_consecutive transformation operation.

[{
"operation": "merge_consecutive"
"description": "Merge consecutive *succesful_stop* events that match the *match_

→˓columns."
"parameters": {

"column_name": "trial_type",
"event_code": "succesful_stop",
"match_columns": ["stop_signal_delay", "response_hand", "sex"],
"set_durations": true,
"ignore_missing": true

}
}]

When this operation is applied to the following input file, the three events with a value of succesful_stop in the
trial_type column starting at onset value 13.5939 are merged into a single event.

Input file for a merge_consecutive operation.

onset duration trial_type stop_signal_delay response_hand sex
0.0776 0.5083 go n/a right female
5.5774 0.5083 unsuccesful_stop 0.2 right female
9.5856 0.5084 go n/a right female
13.5939 0.5083 succesful_stop 0.2 n/a female
14.2 0.5083 succesful_stop 0.2 n/a female
15.3 0.7083 succesful_stop 0.2 n/a female
17.3 0.5083 unsuccesful_stop 0.25 n/a female
19.0 0.5083 unsuccesful_stop 0.25 n/a female
21.1021 0.5083 unsuccesful_stop 0.25 left male
22.6103 0.5083 go n/a left male

Notice that the succesful_stop event at onset value 17.3 is not merged because the stop_signal_delay column
value does not match the value in the previous event. The final result has duration computed as 2.4144 = 15.3 +
0.7083 - 13.5939.

The results of the merge_consecutive operation.

6.14. File remodeling tools 123

HED Resources, Release 0.0.1

onset duration trial_type stop_signal_delay response_hand sex
0.0776 0.5083 go n/a right female
5.5774 0.5083 unsuccesful_stop 0.2 right female
9.5856 0.5084 go n/a right female
13.5939 2.4144 succesful_stop 0.2 n/a female
17.3 2.2083 unsuccesful_stop 0.25 n/a female
21.1021 0.5083 unsuccesful_stop 0.25 left male
22.6103 0.5083 go n/a left male

The events that had onsets at 17.3 and 19.0 are also merged in this example

6.14.8.5 Remap columns

The remap_columns operation maps combinations of values in m specified columns of a data file into values in n
columns using a defined mapping. Remapping is useful during analysis to create columns in event files that are more
directly useful or informative for a particular analysis.

Remapping is also important during the initial generation of event files from experimental logs. The log files generated
by experimental control software often generate a code for each type of log entry. Remapping can be used to convert
the column containing these codes into one or more columns with more informative information.

Remap columns parameters

Parameters for the remap_columns operation.

Parameter Type Description
source_columnslist A list of m names of the source columns for the map.
destina-
tion_columns

list A list of n names of the destination columns for the map.

map_list list A list of mappings. Each element is a list of m source column values followed by n destination
values. Mapping source values are treated as strings.

ig-
nore_missing

bool If false, source column values not in the map generate “n/a” destination values instead of
errors.

inte-
ger_sources

list [Optional] A list of source columns that are integers. The integer_sources must be a subset
of source_columns.

A column cannot be both a source and a destination, and all source columns must be present in the data files. New
columns are created for destination columns that are missing from a data file.

The remap_columns operation only works for columns containing strings or integers, as it is meant for remapping
categorical codes. You must specify the which source columns contain integers so that n/a values can be handled
appropriately.

The map_list parameter specifies how each unique combination of values from the source columns will be mapped into
the destination columns. If there are m source columns and n destination columns, then each entry in map_list must be
a list with m + n elements. The first m elements are the key values from the source columns. The map_list should have
targets for all combinations of values that appear in the m source columns unless ignore_missing is true.

After remapping, the tabular file will contain both source and destination columns. If you wish to replace the source
columns with the destination columns, use a remove_columns transformation after the remap_columns.

124 Chapter 6. History and Support

HED Resources, Release 0.0.1

Remap columns example

The remap_columns operation in the following example creates a new column called response_type based on the unique
values in the combination of columns response_accuracy and response_hand.

A JSON file with a single remap_columns transformation operation.

[{
"operation": "remap_columns",
"description": "Map response_accuracy and response hand into a single column.",
"parameters": {

"source_columns": ["response_accuracy", "response_hand"],
"destination_columns": ["response_type"],
"map_list": [["correct", "left", "correct_left"],

["correct", "right", "correct_right"],
["incorrect", "left", "incorrect_left"],
["incorrect", "right", "incorrect_left"],
["n/a", "n/a", "n/a"]],

"ignore_missing": true
}

}]

In this example there are two source columns and one destination column, so each entry in map_list must be a list with
three elements two source values and one destination value). Since all the values in map_list are strings, the optional
integer_sources list is not needed.

The results of executing the previous remap_column command on the sample remodel event file are:

Mapping columns response_accuracy and response_hand into a response_type column.

on-
set

dura-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex re-
sponse_type

0.0776 0.5083 go n/a 0.565 correct right fe-
male

cor-
rect_right

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

cor-
rect_right

9.5856 0.5084 go n/a 0.45 correct right fe-
male

cor-
rect_right

13.5939 0.5083 succes-
ful_stop

0.2 n/a n/a n/a fe-
male

n/a

17.1021 0.5083 unsucces-
ful_stop

0.25 0.633 correct left male cor-
rect_left

21.6103 0.5083 go n/a 0.443 correct left male cor-
rect_left

In this example, remap_columns combines the values from columns response_accuracy and response_hand to
produce a new column called response_type that specifies both response hand and correctness information using a
single code.

6.14. File remodeling tools 125

HED Resources, Release 0.0.1

6.14.8.6 Remove columns

Sometimes columns are added during intermediate processing steps. The remove_columns operation is useful for
cleaning up unnecessary columns after these processing steps complete.

Remove columns parameters

Parameters for the remove_columns operation.

Parameter Type Description
column_names list of str A list of columns to remove.
ignore_missing boolean If true, missing columns are ignored, otherwise raise KeyError.

If one of the specified columns is not in the file and the ignore_missing parameter is false, a KeyError is raised for the
missing column.

Remove columns example

The following example specifies that the remove_columns operation should remove the stop_signal_delay,
response_accuracy, and face columns from the tabular data.

A JSON file with a single remove_columns transformation operation.

[{
"operation": "remove_columns",
"description": "Remove extra columns before the next step.",
"parameters": {

"column_names": ["stop_signal_delay", "response_accuracy", "face"],
"ignore_missing": true

}
}]

The results of executing this operation on the sample remodel event file are shown below. The face column is not in
the data, but it is ignored, since ignore_missing is true. If ignore_missing had been false, a KeyError would have been
raised.

Results of executing the remove_columns.

onset duration trial_type response_time response_hand sex
0.0776 0.5083 go 0.565 right female
5.5774 0.5083 unsuccesful_stop 0.49 right female
9.5856 0.5084 go 0.45 right female
13.5939 0.5083 succesful_stop n/a n/a female
17.1021 0.5083 unsuccesful_stop 0.633 left male
21.6103 0.5083 go 0.443 left male

126 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.14.8.7 Remove rows

The remove_rows operation eliminates rows in which the named column has one of the specified values. This opera-
tion is useful for removing event markers corresponding to particular types of events or, for example having n/a in a
particular column.

Remove rows parameters

Parameters for remove_rows.

Parameter Type Description
column_name str The name of the column to be tested.
remove_values list A list of values to be tested for removal.

The operation does not raise an error if a data file does not have a column named column_name or is missing a value
in remove_values.

Remove rows example

The following remove_rows operation removes the rows whose trial_type column contains either succesful_stop or
unsuccesful_stop.

A JSON file with a single remove_rows transformation operation.

[{
"operation": "remove_rows",
"description": "Remove rows where trial_type is either succesful_stop or unsuccesful_

→˓stop.",
"parameters": {

"column_name": "trial_type",
"remove_values": ["succesful_stop", "unsuccesful_stop"]

}
}]

The results of executing the previous remove_rows operation on the sample remodel event file are:

The results of executing the previous remove_rows operation.

onset dura-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex

0.0776 0.5083 go n/a 0.565 correct right fe-
male

9.5856 0.5084 go n/a 0.45 correct right fe-
male

21.6103 0.5083 go n/a 0.443 correct left male

6.14. File remodeling tools 127

HED Resources, Release 0.0.1

After removing rows with trial_type equal to succesful_stop or unsuccesful_stop only the three go trials
remain.

6.14.8.8 Rename columns

The rename_columns operations uses a dictionary to map old column names into new ones.

Rename columns parameters

Parameters for rename_columns.

Parameter Type Description
column_mapping dict The keys are the old column names and the values are the new names.
ignore_missing bool If false, a KeyError is raised if a dictionary key is not a column name.

If ignore_missing is false, a KeyError is raised if a column specified in the mapping does not correspond to a column
name in the data file.

Rename columns example

The following example renames the stop_signal_delay column to be stop_delay and the response_hand to be
hand_used.

A JSON file with a single rename_columns transformation operation.

[{
"operation": "rename_columns",
"description": "Rename columns to be more descriptive.",
"parameters": {

"column_mapping": {
"stop_signal_delay": "stop_delay",
"response_hand": "hand_used"

},
"ignore_missing": true

}
}]

The results of executing the previous rename_columns operation on the sample remodel event file are:

After the rename_columns operation is executed, the sample events file is:

128 Chapter 6. History and Support

HED Resources, Release 0.0.1

onset dura-
tion

trial_type stop_delay re-
sponse_time

re-
sponse_accuracy

hand_used sex

0.0776 0.5083 go n/a 0.565 correct right fe-
male

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

9.5856 0.5084 go n/a 0.45 correct right fe-
male

13.5939 0.5083 succesful_stop 0.2 n/a n/a n/a fe-
male

17.1021 0.5083 unsucces-
ful_stop

0.25 0.633 correct left male

21.6103 0.5083 go n/a 0.443 correct left male

6.14.8.9 Reorder columns

The reorder_columns operation reorders the indicated columns in the specified order. This operation is often used to
place the most important columns near the beginning of the file for readability or to assure that all the data files in
dataset have the same column order. Additional parameters control how non-specified columns are treated.

Reorder columns parameters

Parameters for the reorder_columns operation.

Parameter Type Description
column_order list A list of columns in the order they should appear in the data.
ignore_missing bool Controls handling column names in the reorder list that aren’t in the data.
keep_others bool Controls handling of columns not in the reorder list.

If ignore_missing is true and items in the reorder list do not exist in the file, the missing columns are ignored. On the
other hand, if ignore_missing is false, a column name in the reorder list that is missing from the data raises a ValueError.

The keep_others parameter controls whether columns in the data that do not appear in the column_order list are dropped
(keep_others is false) or put at the end in the relative order that they appear in the file (keep_others is true).

BIDS event files are required to have onset and duration as the first and second columns, respectively.

Reorder columns example

The reorder_columns operation in the following example specifies that the first four columns of the dataset should be:
onset, duration, response_time, and trial_type. Since keep_others is false, these will be the only columns
retained.

A JSON file with a single reorder_columns transformation operation.

6.14. File remodeling tools 129

HED Resources, Release 0.0.1

[{
"operation": "reorder_columns",
"description": "Reorder columns.",
"parameters": {

"column_order": ["onset", "duration", "response_time", "trial_type"],
"ignore_missing": true,
"keep_others": false

}
}]

The results of executing the previous reorder_columns transformation on the sample remodel event file are:

Results of reorder_columns.

onset duration response_time trial_type
0.0776 0.5083 0.565 go
5.5774 0.5083 0.49 unsuccesful_stop
9.5856 0.5084 0.45 go
13.5939 0.5083 n/a succesful_stop
17.1021 0.5083 0.633 unsuccesful_stop
21.6103 0.5083 0.443 go

6.14.8.10 Split rows

The split_rows operation is often used to convert event files from trial-level encoding to event-level encoding.

In trial-level encoding, all the events in a single trial (usually some variation of the cue-stimulus-response-feedback-
ready sequence) are represented by a single row in the data file. Often, the onset corresponds to the presentation of the
stimulus, and the other events are not reported or are implicitly reported.

In event-level encoding, each row represents the temporal marker for a single event. In this case a trial consists of a
sequence of multiple events.

Split rows parameters

Parameters for the split_rows operation.

Parame-
ter

Type Description

an-
chor_column

str The name of the column that will be used for split_rows codes.

new_events dict Dictionary whose keys are the codes to be inserted as new eventsin the anchor_column and
whose values are dictionaries withkeys onset_source, duration, and copy_columns.

re-
move_parent_event

bool If true, remove parent event.

130 Chapter 6. History and Support

HED Resources, Release 0.0.1

The split_rows operation requires an anchor_column, which could be an existing column or a new column to be ap-
pended to the data. The purpose of the anchor_column is to hold the codes for the new events.

The new_events dictionary has the new events to be created. The keys are the new event codes to be inserted into the
anchor_column. The values in new_events are themselves dictionaries. Each of these dictionaries has three keys:

• onset_source is a list of items to be added to the onset of the event row being split to produce the onset column
value for the new event. These items can be any combination of numerical values and column names.

• duration a list of numerical values and/or column names whose values are to be added to compute the duration
column value for the new event.

• copy_columns a list of column names whose values should be copied into each new event. Unlisted columns are
filled with n/a.

The split_rows operation sorts the split rows by the onset column and raises a TypeError if the onset and duration
are improperly defined. The onset column is converted to numeric values as part splitting process.

Split rows example

The split_rows operation in the following example specifies that new rows should be added to encode the response and
stop signal. The anchor column is trial_type.

A JSON file with a single split_rows transformation operation.

[{
"operation": "split_rows",
"description": "add response events to the trials.",

"parameters": {
"anchor_column": "trial_type",
"new_events": {

"response": {
"onset_source": ["response_time"],
"duration": [0],
"copy_columns": ["response_accuracy", "response_hand", "sex", "trial_

→˓number"]
},
"stop_signal": {

"onset_source": ["stop_signal_delay"],
"duration": [0.5],
"copy_columns": ["trial_number"]

}
},
"remove_parent_event": false

}
}]

The results of executing this split_rows operation on the sample remodel event file are:

Results of the previous split_rows operation.

6.14. File remodeling tools 131

HED Resources, Release 0.0.1

onset dura-
tion

trial_type stop_signal_delayre-
sponse_time

re-
sponse_accuracy

re-
sponse_hand

sex

0.0776 0.5083 go n/a 0.565 correct right fe-
male

0.6426 0 response n/a n/a correct right fe-
male

5.5774 0.5083 unsucces-
ful_stop

0.2 0.49 correct right fe-
male

5.7774 0.5 stop_signal n/a n/a n/a n/a n/a
6.0674 0 response n/a n/a correct right fe-

male
9.5856 0.5084 go n/a 0.45 correct right fe-

male
10.0356 0 response n/a n/a correct right fe-

male
13.5939 0.5083 succes-

ful_stop
0.2 n/a n/a n/a fe-

male
13.7939 0.5 stop_signal n/a n/a n/a n/a n/a
17.1021 0.5083 unsucces-

ful_stop
0.25 0.633 correct left male

17.3521 0.5 stop_signal n/a n/a n/a n/a n/a
17.7351 0 response n/a n/a correct left male
21.6103 0.5083 go n/a 0.443 correct left male
22.0533 0 response n/a n/a correct left male

In a full processing example, it might make sense to rename trial_type to be event_type and to delete the
response_time and the stop_signal_delay columns, since these items have been unfolded into separate events.
This could be accomplished in subsequent clean-up operations.

6.14.9 Remodel summarizations

Summarizations differ transformations in two respects: they do not modify the input data file, and they keep information
about the results from each file that has been processed. Summarization operations may be used at several points in the
operation list as checkpoints during debugging as well as for their more typical informational uses.

All summary operations have two required parameters: summary_name and summary_filename.

The summary_name is the unique key used to identify the particular incarnation of this summary in the dispatcher.
Care should be taken to make sure that the summary_name is unique within a given JSON remodeling file if the same
summary operation is used more than once within the file (e.g. for before and after summary information).

The summary_filename should also be unique and is used for saving the summary upon request. When the remodeler
is applied to full datasets rather than single files, the summaries are saved in the derivatives/remodel/summaries
directory under the dataset root. A time stamp and file extension are appended to the summary_filename when the
summary is saved.

132 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.14.9.1 Summarize column names

The summarize_column_names tracks the unique column name patterns found in data files across the dataset and which
files have these column names. This summary is useful for determining whether there are any non-conforming data
files.

Often event files associated with different tasks have different column names, and this summary can be used to verify
that the files corresponding to the same task have the same column names.

A more problematic issue is when some event files for the same task have reordered column names or use different
column names.

Summarize column names parameters

The summarize_column_names operation has no parameters and only requires the summary_name and the sum-
mary_filename to specify the operation.

The summarize_column_names operation only has the two parameters required of all summaries.

Parameters for the summarize_column_names operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
append_timecode bool (Optional) If True, append a time code to filename.False is the default.

Summarize column names example

The following example remodeling file produces a summary, which when saved will appear with file name
AOMIC_column_names_xxx.txt or AOMIC_column_names_xxx.json where xxx is a timestamp.

A JSON file with a single summarize_column_names summarization operation.

[{
"operation": "summarize_column_names",
"description": "Summarize column names.",
"parameters": {

"summary_name": "AOMIC_column_names",
"summary_filename": "AOMIC_column_names"

}
}]

When this operation is applied to the sample remodel event file, the following text summary is produced.

Result of applying summarize_column_names to the sample remodel file.

Summary name: AOMIC_column_names
Summary type: column_names

(continues on next page)

6.14. File remodeling tools 133

HED Resources, Release 0.0.1

(continued from previous page)

Summary filename: AOMIC_column_names

Summary details:

Dataset: Number of files=1
Columns: ['onset', 'duration', 'trial_type', 'stop_signal_delay', 'response_time',

→˓'response_accuracy', 'response_hand', 'sex']
sub-0013_task-stopsignal_acq-seq_events.tsv

Individual files:

sub-0013_task-stopsignal_acq-seq_events.tsv:
['onset', 'duration', 'trial_type', 'stop_signal_delay', 'response_time', 'response_

→˓accuracy', 'response_hand', 'sex']

Since we are only summarizing one event file, there is only one unique pattern – corresponding to the columns: onset,
duration, trial_type, stop_signal_delay, response_time, response_accuracy, response_hand, and response_time.

When the dataset has multiple column name patterns, the summary lists unique pattern separately along with the names
of the data files that have this pattern.

The JSON version of the summary is useful for programmatic manipulation, while the text version shown above is
more readable.

6.14.9.2 Summarize column values

The summarize column values operation provides a summary of the number of times various column values appear in
event files across the dataset.

Summarize column values parameters

The following table lists the parameters required for using the summary.

Parameters for the summarize_column_values operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
skip_columns list A list of column names to omit from the summary.
value_columns list A list of columns to omit the listing unique values.
append_timecode bool (Optional) If True, append a time code to filename.False is the default.

In addition to the standard parameters, summary_name and summary_filename required of all summaries, the summa-
rize_column_values operation requires two additional lists to be supplied. The skip_columns list specifies the names
of columns to skip entirely in the summary. Typically, the onset, duration, and sample columns are skipped, since
they have unique values for each row and their values have limited information.

134 Chapter 6. History and Support

HED Resources, Release 0.0.1

The summarize_column_values is mainly meant for creating summary information about columns containing a finite
number of distinct values. Columns that contain numeric information will usually have distinct entries for each row
in a tabular file and are not amenable to such summarization. These columns could be specified as skip_columns,
but another option is to designate them as value_columns. The value_columns are reported in the summary, but their
distinct values are not reported individually.

For datasets that include multiple tasks, the event values for each task may be distinct. The summarize_column_values
operation does not separate by task, but expects the calling programs filter the files by task as desired. The run_remodel
program supports selecting files corresponding to a particular task.

Summarize column values example

The following example shows the JSON for including this operation in a remodeling file.

A JSON file with a single summarize_column_values summarization operation.

[{
"operation": "summarize_column_values",
"description": "Summarize the column values in an excerpt.",
"parameters": {

"summary_name": "AOMIC_column_values",
"summary_filename": "AOMIC_column_values",
"skip_columns": ["onset", "duration"],
"value_columns": ["response_time", "stop_signal_delay"]

}
}]

A text format summary of the results of executing this operation on the sample remodel event file is shown in the
following example.

Sample summarize_column_values operation results in text format.

Summary name: AOMIC_column_values
Summary type: column_values
Summary filename: AOMIC_column_values

Overall summary:
Dataset: Total events=6 Total files=1

Categorical column values[Events, Files]:
response_accuracy:

correct[5, 1] n/a[1, 1]
response_hand:

left[2, 1] n/a[1, 1] right[3, 1]
sex:

female[4, 1] male[2, 1]
trial_type:

go[3, 1] succesful_stop[1, 1] unsuccesful_stop[2, 1]
Value columns[Events, Files]:

response_time[6, 1]
stop_signal_delay[6, 1]

(continues on next page)

6.14. File remodeling tools 135

HED Resources, Release 0.0.1

(continued from previous page)

Individual files:

sub-0013_task-stopsignal_acq-seq_events.tsv:
Total events=200

Categorical column values[Events, Files]:
response_accuracy:

correct[5, 1] n/a[1, 1]
response_hand:

left[2, 1] n/a[1, 1] right[3, 1]
sex:

female[4, 1] male[2, 1]
trial_type:

go[3, 1] succesful_stop[1, 1] unsuccesful_stop[2, 1]
Value columns[Events, Files]:

response_time[6, 1]
stop_signal_delay[6, 1]

Because the sample remodel event file only has 6 events, we expect that no value will be represented in more than 6
events. The column names corresponding to value columns just have the event counts in them.

This command was executed with the -i option in run_remodel, results from the individual data files are shown
after the overall summary. The individual results are similar to the overall summary because only one data file was
processed.

For a more extensive example see the text and JSON format summaries of the sample dataset ds003645s_hed using
the summarize_columns_rmdl.json remodeling file.

6.14.9.3 Summarize definitions

The summarize definitions operation provides a summary of the Def-expand tags found across the dataset, nothing
any ambiguous or erroneous ones. If working on a BIDS dataset, it will initialize with the known definitions from the
sidecar, reporting any deviations from the known definitions as errors.

Summarize definitions parameters

The following table lists the parameters required for using the summary.

Parameters for the summarize_definitions operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
append_timecode bool (Optional) If True, append a time code to filename.False is the default.

The summarize_definitions is mainly meant for verifying consistency in unknown Def-expand tags. This comes up
where you have an assembled dataset, but no longer have the definitions stored (or never created them to begin with).

136 Chapter 6. History and Support

https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed

HED Resources, Release 0.0.1

Summarize definitions example

The following example shows the JSON for including this operation in a remodeling file.

A JSON file with a single summarize_definitions summarization operation.

[{
"operation": "summarize_definitions",
"description": "Summarize the definitions used in this dataset.",
"parameters": {

"summary_name": "HED_column_definition_summary",
"summary_filename": "HED_column_definition_summary"

}
}]

A text format summary of the results of executing this operation on the sub-003_task-FacePerception_run-
3_events.tsv file of the eeg_ds_003645s_hed_column dataset is shown in the following example.

Sample summarize_definitions operation results in text format.

Summary name: HED_column_definition_summary
Summary type: definitions
Summary filename: HED_column_definition_summary

Overall summary:
Known Definitions: 17 items

cross-only: 2 items
description: A white fixation cross on a black background in the center of the␣

→˓screen.
contents: (Visual-presentation,(Background-view,Black),(Foreground-view,(Center-

→˓of,Computer-screen),(Cross,White)))
face-image: 2 items

description: A happy or neutral face in frontal or three-quarters frontal pose␣
→˓with long hair cropped presented as an achromatic foreground image on a black␣
→˓background with a white fixation cross superposed.

contents: (Visual-presentation,(Background-view,Black),(Foreground-view,
→˓((Center-of,Computer-screen),(Cross,White)),(Grayscale,(Face,Hair,Image))))

circle-only: 2 items
description: A white circle on a black background in the center of the screen.
contents: (Visual-presentation,(Background-view,Black),(Foreground-view,

→˓((Center-of,Computer-screen),(Circle,White))))
press-left-finger: 2 items

description: The participant presses a key with the left index finger to␣
→˓indicate a face symmetry judgment.

contents: ((Index-finger,(Experiment-participant,Left-side-of)),(Keyboard-key,
→˓Press))

press-right-finger: 2 items
description: The participant presses a key with the right index finger to␣

→˓indicate a face symmetry evaluation.
contents: ((Index-finger,(Experiment-participant,Right-side-of)),(Keyboard-key,

→˓Press))
(continues on next page)

6.14. File remodeling tools 137

https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed_column

HED Resources, Release 0.0.1

(continued from previous page)

famous-face-cond: 2 items
description: A face that should be recognized by the participants
contents: (Condition-variable/Face-type,(Image,(Face,Famous)))

unfamiliar-face-cond: 2 items
description: A face that should not be recognized by the participants.
contents: (Condition-variable/Face-type,(Image,(Face,Unfamiliar)))

scrambled-face-cond: 2 items
description: A scrambled face image generated by taking face 2D FFT.
contents: (Condition-variable/Face-type,(Image,(Disordered,Face)))

first-show-cond: 2 items
description: Factor level indicating the first display of this face.
contents: ((Condition-variable/Repetition-type,Item-interval/0,(Face,Item-count/

→˓1)))
immediate-repeat-cond: 2 items

description: Factor level indicating this face was the same as previous one.
contents: ((Condition-variable/Repetition-type,Item-interval/1,(Face,Item-count/

→˓2)))
delayed-repeat-cond: 2 items

description: Factor level indicating face was seen 5 to 15 trials ago.
contents: (Condition-variable/Repetition-type,(Face,Item-count/2),(Item-

→˓interval,(Greater-than-or-equal-to,Item-interval/5)))
left-sym-cond: 2 items

description: Left index finger key press indicates a face with above average␣
→˓symmetry.

contents: (Condition-variable/Key-assignment,((Asymmetrical,Behavioral-
→˓evidence),(Index-finger,(Experiment-participant,Right-side-of))),((Behavioral-evidence,
→˓Symmetrical),(Index-finger,(Experiment-participant,Left-side-of))))

right-sym-cond: 2 items
description: Right index finger key press indicates a face with above average␣

→˓symmetry.
contents: (Condition-variable/Key-assignment,((Asymmetrical,Behavioral-

→˓evidence),(Index-finger,(Experiment-participant,Left-side-of))),((Behavioral-evidence,
→˓Symmetrical),(Index-finger,(Experiment-participant,Right-side-of))))

face-symmetry-evaluation-task: 2 items
description: Evaluate degree of image symmetry and respond with key press␣

→˓evaluation.
contents: (Experiment-participant,Task,(Discriminate,(Face,Symmetrical)),(Face,

→˓See),(Keyboard-key,Press))
blink-inhibition-task: 2 items

description: Do not blink while the face image is displayed.
contents: (Experiment-participant,Inhibit-blinks,Task)

fixation-task: 2 items
description: Fixate on the cross at the screen center.
contents: (Experiment-participant,Task,(Cross,Fixate))

initialize-recording: 2 items
description:
contents: (Recording)

Ambiguous Definitions: 0 items

Errors: 0 items

Since this file didn’t have any ambiguous or incorrect Def-expand groups, those sections are empty. Ambiguous defi-

138 Chapter 6. History and Support

HED Resources, Release 0.0.1

nitions are those that take a placeholder, but it doesn’t have enough information to be sure to which tag the placeholder
applies. Erroneous ones are ones with conflicting expanded forms.

Currently, summaries are not generated for individual files, but this is likely to change in the future.

Below is a simple example showing the format when erroneous or ambiguous definitions are found.

Sample input for summarize_definitions operation documenting ambiguous/erroneous definitions.

((Def-expand/Initialize-recording,(Recording)),Onset)
((Def-expand/Initialize-recording,(Recording, Event)),Onset)
(Def-expand/Specify-age/1,(Age/1, Item-count/1))

Sample summarize_definitions operation error results in text format.

Summary name: HED_column_definition_summary
Summary type: definitions
Summary filename: HED_column_definition_summary

Overall summary:
Known Definitions: 1 items

initialize-recording: 2 items
description:
contents: (Recording)

Ambiguous Definitions: 1 items
specify-age/#: (Age/#,Item-count/#)

Errors: 1 items
initialize-recording:

(Event,Recording)

It is assumed the first definition encountered is the correct definition, unless the first one is ambiguous. Thus, it finds
(Def-expand/Initialize-recording,(Recording) and considers it valid, before encountering (Def-expand/
Initialize-recording,(Recording, Event)), which is now deemed an error.

6.14.9.4 Summarize HED tags

The summarize_hed_tags operation extracts a summary of the HED tags present in the annotations of a dataset. This
summary operation assumes that the structure in question is suitably annotated with HED (Hierarchical Event Descrip-
tors). You must provide a HED schema version. If the data has annotations in a JSON sidecar, you must also provide
its path.

6.14. File remodeling tools 139

HED Resources, Release 0.0.1

Summarize HED tags parameters

The summarize_hed_tags operation has the two required parameters (tags and expand_context) in addition to the stan-
dard summary_name and summary_filename parameters.

Parameters for the summarize_hed_tags operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
tags dict Dictionary with category title keys and tags in that category as values.
append_timecode bool (Optional) If True, append a time code to filename.False is the default.
expand_context bool (Optional) If true, expand Event-context to account for onsets and offsets.

The tags dictionary has keys that specify how the user wishes the tags to be categorized for display. Note that these
keys are titles designating display categories, not HED tags.

The tags dictionary values are lists of actual HED tags (or their children) that should be listed under the respective
display categories.

If expand_context is false, the counts are calculated without expanding the event context. The option of expanding the
event context to account for onset/offset effects is not implemented in this release.

The following remodeling command specifies that the tag counts should be grouped under the titles: Sensory events,
Agent actions, and Objects. Any leftover tags will appear under the title “Other tags”.

Summarize HED tags example

A JSON file with a single summarize_hed_tags summarization operation.

[{
"operation": "summarize_hed_tags",
"description": "Summarize the HED tags in the dataset.",
"parameters": {

"summary_name": "summarize_hed_tags",
"summary_filename": "summarize_hed_tags",
"tags": {

"Sensory events": ["Sensory-event", "Sensory-presentation",
"Task-stimulus-role", "Experimental-stimulus"],

"Agent actions": ["Agent-action", "Agent", "Action", "Agent-task-role",
"Task-action-type", "Participant-response"],

"Objects": ["Item"]
}

}
}]

The results of executing this operation on the sample remodel event file are shown below.

Text summary of summarize_hed_tags operation on the sample remodel file.

140 Chapter 6. History and Support

HED Resources, Release 0.0.1

Summary name: summarize_hed_tags
Summary type: hed_tag_summary
Summary filename: summarize_hed_tags

Overall summary:
Dataset: Total events=1200 Total1 file=6

Main tags[events,files]:
Sensory events:

Sensory-presentation[6,1] Visual-presentation[6,1] Auditory-
→˓presentation[3,1]

Agent actions:
Incorrect-action[2,1] Correct-action[1,1]

Objects:
Image[6,1]

Other tags[events,files]:
Label[6,1] Def[6,1] Delay[3,1]

Individual files:

aomic_sub-0013_excerpt_events.tsv:
Total events=6

Main tags[events,files]:
Sensory events:

Sensory-presentation[6,1] Visual-presentation[6,1] Auditory-presentation[3,1]
Agent actions:

Incorrect-action[2,1] Correct-action[1,1]
Objects:

Image[6,1]
Other tags[events,files]:

Label[6,1] Def[6,1] Delay[3,1]

The HED tag Task-action-type was specified in the “Agent actions” category, Incorrect-action and Correct-action,
which are children of Task-action-type in the HED schema, will appear with counts in the list under this category.

The sample events file had 6 events, including 1 correct action and 2 incorrect actions. Since only one file was processed,
the information for Dataset was similar to that presented under Individual files.

For a more extensive example, see the text and JSON format summaries of the sample dataset ds003645s_hed using
the summarize_hed_tags_rmdl.json remodeling file.

6.14. File remodeling tools 141

https://www.hedtags.org/display_hed.html
https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed

HED Resources, Release 0.0.1

6.14.9.5 Summarize HED type

The summarize_hed_type operation is designed to extract experimental design matrices or other experimental structure.
This summary operation assumes that the structure in question is suitably annotated with HED (Hierarchical Event
Descriptors). The HED conditions and design matrices explains how this works.

Summarize HED type parameters

The summarize_hed_type operation provides detailed information about a specified tag, usually Condition-variable
or Task. This summary provides useful information about experimental design.

Parameters for the summarize_hed_type operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
type_tag str Tag to produce a summary for (most often condition-variable).
append_timecode bool (Optional) If True, append a time code to filename.False is the default.

In addition to the two standard parameters (summary_name and summary_filename), the type_tag parameter is required.
Only one tag can be given, so you must provide a separate operations in the remodel file for multiple type tags.

Summarize HED type example

A JSON file with a single summarize_hed_type summarization operation.

[{
"operation": "summarize_hed_type",
"description": "Summarize column names.",
"parameters": {

"summary_name": "AOMIC_condition_variables",
"summary_filename": "AOMIC_condition_variables",
"type_tag": "condition-variable"

}
}]

The results of executing this operation on the sample remodel event file are shown below.

Text summary of summarize_hed_types operation on the sample remodel file.

Summary name: AOMIC_condition_variables
Summary type: hed_type_summary
Summary filename: AOMIC_condition_variables

Overall summary:

Dataset: Type=condition-variable Type values=1 Total events=6 Total files=1
(continues on next page)

142 Chapter 6. History and Support

https://hed-examples.readthedocs.io/en/latest/HedConditionsAndDesignMatrices.html

HED Resources, Release 0.0.1

(continued from previous page)

image-sex: 2 levels in 6 event(s)s out of 6 total events in 1 file(s)
female-image-cond [4,1]: ['Female', 'Image', 'Face']
male-image-cond [2,1]: ['Male', 'Image', 'Face']

Individual files:

aomic_sub-0013_excerpt_events.tsv:
Type=condition-variable Total events=6

image-sex: 2 levels in 6 events
female-image-cond [4 events, 1 files]:

Tags: ['Female', 'Image', 'Face']
male-image-cond [2 events, 1 files]:

Tags: ['Male', 'Image', 'Face']

Because summarize_hed_type is a HED operation, a HED schema version is required and a JSON sidecar is also usually
needed. This summary was produced by using hed_version="8.1.0" when creating the dispatcher and using the
sample remodel sidecar file in the do_op. The sidecar provides the annotations that use the condition-variable
tag in the summary.

For a more extensive example, see the text and JSON format summaries of the sample dataset ds003645s_hed using
the summarize_hed_types_rmdl.json remodeling file.

6.14.9.6 Summarize HED validation

The summarize_hed_validation operation runs the HED validator on the requested data and produces a summary of
the errors. See the HED validation guide for available methods of running the HED validator.

Summarize HED validation parameters

In addition to the required summary_name and summary_filename parameters, the summarize_hed_validation opera-
tion has a required boolean parameter check_for_warnings. If check_for_warnings is false, the summary will not report
warnings.

Parameters for the summarize_hed_validation operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
check_for_warnings bool If true, warnings are reported, otherwise warnings are ignored.
append_timecode bool (Optional) If True, append a time code to filename.False is the default.

The summarize_hed_validation is a HED operation and the calling program must provide a HED schema version and
usually a JSON sidecar containing the HED annotations.

The validation process takes place in two stages: first the JSON sidecar is validated. This strategy is used because a
single error in the JSON sidecar can generate an error message for every line in the corresponding data file.

If the JSON sidecar has errors (warnings don’t count), the validation process is terminated without validation of the
data file and assembled HED annotations.

6.14. File remodeling tools 143

https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed

HED Resources, Release 0.0.1

If the JSON sidecar does not have errors, the validator assembles the annotations for each line in the data files and val-
idates the assembled HED annotation. Data file-wide consistency, such as matched onsets and offsets, is also checked.

Summarize HED validation example

A JSON file with a single summarize_hed_validation summarization operation.

[{
"operation": "summarize_hed_validation",
"description": "Summarize validation errors in the sample dataset.",
"parameters": {

"summary_name": "AOMIC_sample_validation",
"summary_filename": "AOMIC_sample_validation",
"check_for_warnings": true

}
}]

To demonstrate the output of the validation operation, we modified the first row of the sample remodel event file so that
trial_type column contained the value baloney rather than go. This modification generates a warning because the
meaning of baloney is not defined in the sample remodel sidecar file. The results of executing the example operation
with the modified file are shown in the following example.

Text summary of summarize_hed_validation operation on a modified sample data file.

Summary name: AOMIC_sample_validation
Summary type: hed_validation
Summary filename: AOMIC_sample_validation

Summary details:

Dataset: [1 sidecar files, 1 event files]
task-stopsignal_acq-seq_events.json: 0 issues
sub-0013_task-stopsignal_acq-seq_events.tsv: 6 issues

Individual files:

sub-0013_task-stopsignal_acq-seq_events.tsv: 1 sidecar files
task-stopsignal_acq-seq_events.json has no issues
sub-0013_task-stopsignal_acq-seq_events.tsv issues:

HED_UNKNOWN_COLUMN: WARNING: Column named 'onset' found in file, but not␣
→˓specified as a tag column or identified in sidecars.

HED_UNKNOWN_COLUMN: WARNING: Column named 'duration' found in file, but not␣
→˓specified as a tag column or identified in sidecars.

HED_UNKNOWN_COLUMN: WARNING: Column named 'response_time' found in file, but␣
→˓not specified as a tag column or identified in sidecars.

HED_UNKNOWN_COLUMN: WARNING: Column named 'response_accuracy' found in file,␣
→˓but not specified as a tag column or identified in sidecars.

HED_UNKNOWN_COLUMN: WARNING: Column named 'response_hand' found in file, but␣
→˓not specified as a tag column or identified in sidecars.

HED_SIDECAR_KEY_MISSING[row=0,column=2]: WARNING: Category key 'baloney'␣
(continues on next page)

144 Chapter 6. History and Support

HED Resources, Release 0.0.1

(continued from previous page)

→˓does not exist in column. Valid keys are: ['succesful_stop', 'unsuccesful_stop', 'go']

This summary was produced using HED schema version hed_version="8.1.0" when creating the dispatcher and
using the sample remodel sidecar file in the do_op.

6.14.9.7 Summarize sidecar from events

The summarize sidecar from events operation generates a sidecar template from the event files in the dataset.

Summarize sidecar from events parameters

The following table lists the parameters required for using the summary.

Parameters for the summarize_sidcar_from_eventsr operation.

Parameter Type Description
summary_name str A unique name used to identify this summary.
summary_filename str A unique file basename to use for saving this summary.
skip_columns list A list of column names to omit from the sidecar.
value_columns list A list of columns to treat as value columns in the sidecar.
append_timecode bool (Optional) If True, append a time code to filename.False is the default.

The standard summary parameters, summary_name and summary_filename are required. The summary_name is the
unique key used to identify the particular incarnation of this summary in the dispatcher. Since a particular operation
file may use a given operation multiple times, care should be taken to make sure that it is unique.

The summary_filename should also be unique and is used for saving the summary upon request. When the remodeler
is applied to full datasets rather than single files, the summaries are saved in the derivatives/remodel/summaries
directory under the dataset root. A time stamp and file extension are appended to the summary_filename when the
summary is saved.

In addition to the standard parameters, summary_name and summary_filename required of all summaries, the summa-
rize_column_values operation requires two additional lists to be supplied. The skip_columns list specifies the names
of columns to skip entirely in generating the sidecar template. The value_columns list specifies the names of columns
to treat as value columns when generating the sidecar template.

Summarize sidecar from events example

The following example shows the JSON for including this operation in a remodeling file.

A JSON file with a single summarize_sidecar_from_events summarization operation.

[{
"operation": "summarize_sidecar_from_events",
"description": "Generate a sidecar from the excerpted events file.",
"parameters": {

"summary_name": "AOMIC_generate_sidecar",
(continues on next page)

6.14. File remodeling tools 145

HED Resources, Release 0.0.1

(continued from previous page)

"summary_filename": "AOMIC_generate_sidecar",
"skip_columns": ["onset", "duration"],
"value_columns": ["response_time", "stop_signal_delay"]

}
}]

The results of executing this operation on the sample remodel event file are shown in the following example using the
text format.

Sample summarize_sidecar_from_events operation results in text format.

Summary name: AOMIC_generate_sidecar
Summary type: events_to_sidecar
Summary filename: AOMIC_generate_sidecar

Dataset: Currently no overall sidecar extraction is available

Individual files:

aomic_sub-0013_excerpt_events.tsv: Total events=6 Skip columns: ['onset', 'duration']
Sidecar:
{

"trial_type": {
"Description": "Description for trial_type",
"HED": {

"go": "(Label/trial_type, Label/go)",
"succesful_stop": "(Label/trial_type, Label/succesful_stop)",
"unsuccesful_stop": "(Label/trial_type, Label/unsuccesful_stop)"

},
"Levels": {

"go": "Here describe column value go of column trial_type",
"succesful_stop": "Here describe column value succesful_stop of column trial_

→˓type",
"unsuccesful_stop": "Here describe column value unsuccesful_stop of column␣

→˓trial_type"
}

},
"response_accuracy": {

"Description": "Description for response_accuracy",
"HED": {

"correct": "(Label/response_accuracy, Label/correct)"
},
"Levels": {

"correct": "Here describe column value correct of column response_accuracy"
}

},
"response_hand": {

"Description": "Description for response_hand",
"HED": {

"left": "(Label/response_hand, Label/left)",
(continues on next page)

146 Chapter 6. History and Support

HED Resources, Release 0.0.1

(continued from previous page)

"right": "(Label/response_hand, Label/right)"
},
"Levels": {

"left": "Here describe column value left of column response_hand",
"right": "Here describe column value right of column response_hand"

}
},
"sex": {

"Description": "Description for sex",
"HED": {

"female": "(Label/sex, Label/female)",
"male": "(Label/sex, Label/male)"

},
"Levels": {

"female": "Here describe column value female of column sex",
"male": "Here describe column value male of column sex"

}
},
"response_time": {

"Description": "Description for response_time",
"HED": "(Label/response_time, Label/#)"

},
"stop_signal_delay": {

"Description": "Description for stop_signal_delay",
"HED": "(Label/stop_signal_delay, Label/#)"

}
}

The current version of the summary does not generate a dataset-wide sidecar.

6.14.10 Remodel implementation

Operations are defined as classes that extent BaseOp regardless of whether they are transformations or summaries.
However, summaries must also implement an additional supporting class that extends BaseSummary to hold the sum-
mary information.

In order to be executed by the remodeling functions, an operation must appear in the valid_operations dictionary.

All operations must provide a PARAMS dictionary, a constructor that calls the base class constructor, and a do_ops
method.

6.14.10.1 The PARAMS dictionary

The class-wide PARAMS dictionary has operation, required_parameters and optional_parameters keys. The
required_parameters and optional_parameters have values that are themselves dictionaries specifying the
names and types of the operation parameters.

The following example shows the PARAMS dictionary for the RemoveColumnsOp class.

The class-wide PARAMS dictionary for the RemoveColumnsOp class.

6.14. File remodeling tools 147

HED Resources, Release 0.0.1

PARAMS = {
"operation": "remove_columns",
"required_parameters": {

"column_names": list,
"ignore_missing": bool

},
"optional_parameters": {}

}

The PARAMS dictionary allows the remodeling tools to check the syntax of the remodel input file for errors.

6.14.10.2 Operation class constructor

All the operation classes have constructors that start with a call to the superclass constructor BaseOp. The following
example shows the constructor for the RemoveColumnsOp class.

The class-wide PARAMS dictionary for the RemoveColumnsOp class.

def __init__(self, parameters):
super().__init__(self.PARAMS, parameters)
self.column_names = parameters['column_names']
ignore_missing = parameters['ignore_missing']
if ignore_missing:

self.error_handling = 'ignore'
else:

self.error_handling = 'raise'

After the call to the base class constructor, the operation constructor assigns the operation-specific values to class
properties and does any additional required operation-specific checks to assure that the parameters are valid.

6.14.10.3 The do_op implementation

The main method that must be implemented by each operation is do_op, which takes an instance of the Dispatcher
class as the first parameter and a Pandas DataFrame representing the event file as the second parameter. A third
required parameter is a name used to identify the event file in error messages and summaries. This name is usually the
filename or the filepath from the dataset root. An additional optional argument, a sidecar containing HED annotations,
only need be included for HED operations.

The following example shows a sample implementation for do_op.

The implementation of do_op for the RemoveColumnsOp class.

def do_op(self, dispatcher, df, name, sidecar=None):
return df.drop(self.remove_names, axis=1, errors=self.error_handling)

The do_op in this case is a wrapper for the underlying Pandas DataFrame operation for removing columns.

IMPORTANT NOTE: The do_op operation always assumes that n/a values have been replaced by numpy.NaN values
in the incoming dataframe df. The Dispatcher class has a static method prep_data that does this replacement. At

148 Chapter 6. History and Support

HED Resources, Release 0.0.1

the end of running all the remodeling operations on a data file Dispatcher run_operations method replaces all of
the numpy.NaN values with n/a, the value expected by BIDS. This operation is performed by the Dispatcher static
method post_proc_data.

6.14.10.4 The do_op for summarization

The do_op operation for summarization operations has a slightly different form, as it serves primarily as a wrapper for
the actual summary information as illustrated by the following example.

The implementation of do_op for SummarizeColumnNamesOp.

def do_op(self, dispatcher, df, name, sidecar=None):
summary = dispatcher.summary_dict.get(self.summary_name, None)
if not summary:

summary = ColumnNameSummary(self)
dispatcher.summary_dict[self.summary_name] = summary

summary.update_summary({"name": name, "column_names": list(df.columns)})
return df

A do_op operation for a summarization checks the dispatcher to see if the summary name is already in the dis-
patcher’s summary_dict. If that summary is not yet in the summary_dict, the operation creates a BaseSummary
object for its summary (e.g., ColumnNameSummary) and adds this object to the dispatcher’s summary_dict, otherwise
the operation fetches the BaseSummary object from It then asks its BaseSummary object to update the summary based
on the dataframe as explained in the next section.

6.14.10.5 Additional requirements for summarization

Any summary operation must implement a supporting class that extends BaseSummary. This class is used to
hold and accumulate the information specific to the summary. This support class must implement two methods:
update_summary and get_summary_details.

The update_summary method is called by its associated BaseOp operation during the do_op to update the summary
information based on the current dataframe. The update_summary information takes a single parameter, which is a
dictionary of information specific to this operation.

The update_summary method required to be implemented by all BaseSummary objects.

def update_summary(self, summary_dict)

In the example do_op for ColumnNamesOp, the dictionary is contains keys for name and `column_names.

The get_summary_details returns a dictionary with the summary-specific information currently in the summary.
The BaseSummary provides universal methods for converting this summary to JSON or text format.

The get_summary_details method required to be implemented by all BaseSummary objects.

get_summary_details(self, verbose=True)

The operation associated with this instance of it associated with a given format implementation

6.14. File remodeling tools 149

HED Resources, Release 0.0.1

6.15 HED Python tools

The HED (Hierarchical Event Descriptor) scripts and notebooks assume that the Python HedTools have been installed.
The HedTools package is not yet available on PyPI, so you will need to install it directly from GitHub using:

pip install git+https://github.com/hed-standard/hed-python/@master

There are several types of Jupyter notebooks and other HED support tools:

• Jupyter notebooks for HED in BIDS - aids for HED annotation in BIDS.

• Jupyter notebooks for data curation - aids for summarizing and reorganizing event data.

• Calling HED tools - specific useful functions/classes.

6.15.1 Jupyter notebooks for HED in BIDS

The following notebooks are specifically designed to support HED annotation for BIDS datasets.

• Summarize BIDS event files

• Extract a JSON sidecar template from event files

• Convert a JSON sidecar to a 4-column spreadsheet

• Validate HED in a BIDS dataset

6.15.1.1 Summarize BIDS event files

Sometimes event files include unexpected or incorrect codes. It is a good idea to find out what is actually in the dataset
event files and whether the information is consistent before starting the annotation process.

The bids_summarize_events.ipynb finds the dataset event files and outputs the column names and number of events
for each event file. You can visually inspect the output to make sure that the event file column names are consistent
across the dataset. The script also summarizes the unique values that appear in different event file columns across the
dataset.

To use this notebook, substitute the specifics of your BIDS dataset for the following variables:

Variables to set in the bids_summarize_events.ipynb Jupyter notebook.

Variable Purpose
bids_root_pathFull path to root directory of dataset.
ex-
clude_dirs

List of directories to exclude when constructing the list of event files.

entities Tuple of entity names used to construct a unique keys representing filenames. (See Dictionaries of
filenames for examples of how to choose the keys.)

name_indicesIndices used to construct a unique keys representing event filenames.(See Dictionaries of filenames for
examples of how to choose these indices.)

skip_columnsList of column names in the events.tsv files to skip in the analysis.

For large datasets, be sure to skip columns such as onset and sample, since the summary produces counts of the
number of times each unique value appears somewhere in dataset event files.

150 Chapter 6. History and Support

https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_summarize_events.ipynb

HED Resources, Release 0.0.1

6.15.1.2 Extract a JSON sidecar template

The usual strategy for producing machine-actionable event annotation using HED in BIDS is to create a single events.
json sidecar file in the BIDS dataset root directory. Ideally, this sidecar will contain all the annotations needed for
users to understand and analyze the data.

See the BIDS annotation quickstart for additional information on this strategy and an online version of the tools.
The Create a JSON template section provides a step-by-step tutorial for using the online tool that creates a tem-
plate based on the information in a single events.tsv file. For most datasets, this is sufficient. In contrast, the
bids_generate_sidecar.ipynb notebook bases the extracted template on the entire dataset.

To use this notebook, substitute the specifics of your BIDS dataset for the following variables:

Variables to set in the bids_extract_sidecar.ipynb Jupyter notebook.

Variable Purpose
bids_root_pathFull path to root directory of dataset.
ex-
clude_dirs

List of directories to exclude when constructing the list of event files.

entities Tuple of entity names used to construct a unique keys representing filenames. (See Dictionaries of
filenames for examples of how to choose the keys.)

skip_columnsList of column names in the events.tsv files to skip in the analysis.
value_columnsList of columns names in the events.tsv files to annotate asas a whole rather than by individual

column value.

For large datasets, be sure to skip columns such as onset and sample, since the summary produces counts of the
number of times each unique value appears somewhere in dataset event files.

6.15.1.3 JSON sidecar to spreadsheet

If you have a BIDS JSON event sidecar or a sidecar template, you may find it more convenient to view and edit the HED
annotations in spreadsheet rather than working with the JSON file directly as explained in the Spreadsheet templates
tutorial.

The bids_sidecar_to_spreadsheet.ipynb notebook demonstrates how to extract the pertinent HED annotation to a
4-column spreadsheet (Pandas dataframe) corresponding to the HED content of a JSON sidecar. A spreadsheet rep-
resentation is useful for quickly reviewing and editing HED annotations. You can easily merge the edited information
back into the BIDS JSON events sidecar.

Here is an example of the spreadsheet that is produced by converting a JSON sidecar template to a spreadsheet template
that is ready to edit. You should only change the values in the description and the HED columns.

Example 4-column spreadsheet template for HED annotation.

column_name column_value description HED
event_type setup_right_sym Description for setup_right_sym Label/setup_right_sym
event_type show_face Description for show_face Label/show_face
event_type left_press Description for left_press Label/left_press
event_type show_circle Description for show_circle Label/show_circle
stim_file n/a Description for stim_file Label/#

6.15. HED Python tools 151

https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html#create-a-json-template
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_generate_sidecar.ipynb
https://hed-examples.readthedocs.io/en/latest/BidsAnnotationQuickstart.html#spreadsheet-templates-anchor
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_sidecar_to_spreadsheet.ipynb

HED Resources, Release 0.0.1

To use this notebook, you will need to provide the path to the JSON sidecar and a path to save the spreadsheet if you
want to save it. If you don’t wish to save the spreadsheet, assign spreadsheet_filename to be None.

The bids_merge_sidecar.ipynb notebook shows the complete process, from extracting the initial sidecar, to converting
to a spreadsheet and then merging in another sidecar.

6.15.1.4 Validate HED in a BIDS dataset

Validating HED annotations as you develop them makes the annotation process easier and faster to debug. The HED
validation guide discusses various HED validation issues and how to fix them.

The bids_validate_dataset.ipynb Jupyter notebook validates HED in a BIDS dataset using the validate method of
BidsDataset. The method first gathers all the relevant JSON sidecars for each event file and validates the sidecars. It
then validates the individual events.tsv files based on applicable sidecars.

The script requires you to set the check_for_warnings flag and the root path to your BIDS dataset.

Note: This validation pertains to event files and HED annotation only. It does not do a full BIDS validation.

The bids_validate_dataset_with_libraries.ipynb Jupyter notebook validates HED in a BIDS dataset using the
validate method of BidsDataset. The example uses three schemas and also illustrates how to manually over-
ride the schema specified in dataset_description.json with schemas from other places. This is very useful for
testing new schemas that are underdevelopment.

6.15.2 Jupyter notebooks for data curation

All data curation notebooks and other examples can now be found in the hed-examples repository.

6.15.2.1 Consistency of BIDS event files

Some neuroimaging modalities such as EEG, typically contain event information encoded in the data recording files,
and the BIDS events.tsv files are generated post hoc.

In general, the following things should be checked before data is released:

1. The BIDS events.tsv files have the same number of events as the data recording and that onset times of
corresponding events agree.

2. The associated information contained in the data recording and event files is consistent.

3. The relevant metadata is present in both versions of the data.

The example data curation scripts discussed in this section assume that two versions of each BIDS event file are present:
events.tsv and a corresponding events_temp.tsv file. The example datasets that are using for these tutorials
assume that the recordings are in EEG.set format. We used the runEeglabEventsToFiles MATLAB script to dump the
events stored in the data.

152 Chapter 6. History and Support

https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_merge_sidecar.ipynb
https://hed-examples.readthedocs.io/en/latest/HedValidation.html
https://hed-examples.readthedocs.io/en/latest/HedValidation.html
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_validate_dataset.ipynb
https://github.com/hed-standard/hed-examples/blob/main/hedcode/jupyter_notebooks/bids_validate_dataset_with_libraries.ipynb
https://github.com/hed-standard/hed-examples
https://raw.githubusercontent.com/hed-standard/hed-curation/main/src/curation/matlab_utility_scripts/hed_utilities/runEeglabEventsToFiles.m

HED Resources, Release 0.0.1

6.15.3 Calling HED tools

This section shows examples of useful processing functions provided in HedTools:

• Getting a list of filenames

• Dictionaries of filenames

• Logging processing steps

6.15.3.1 Getting a list of files

Many situations require the selection of files in a directory tree based on specified criteria. The get_file_list
function allows you to pick out files with a specified filename prefix and filename suffix and specified extensions

The following example returns a list of full paths of the files whose names end in _events.tsv or _events.json
that are not in any code or derivatives directories in the bids_root_path directory tree. The search starts in the
directory root bids_root_path:

Get a list of specified files in a specified directory tree.

file_list = get_file_list(bids_root_path, extensions=[".json", ".tsv"], name_suffix="_
→˓events",

name_prefix="", exclude_dirs=["code", "derivatives"])

6.15.3.2 Dictionaries of filenames

The HED tools provide both generic and BIDS-specific classes for dictionaries of filenames.

The Many of the HED data processing tools make extensive use of dictionaries specif

BIDS-specific dictionaries of files

Files in BIDS have unique names that indicate not only what the file represents, but also where that file is located within
the BIDS dataset directory tree.

BIDS file names and keys

A BIDS file name consists of an underbar-separated list of entities, each specified as a name-value pair, followed by
suffix indicating the data modality.

For example, the file name sub-001_ses-3_task-target_run-01_events.tsv has entities subject (sub), task
(task), and run (run). The suffix is events indicating that the file contains events. The extension .tsv gives the data
format.

Modality is not the same as data format, since some modalities allow multiple formats. For exam-
ple, sub-001_ses-3_task-target_run-01_eeg.set and sub-001_ses-3_task-target_run-01_eeg.edf are
both acceptable representations of EEG files, but the data is in different formats.

The BIDS file dictionaries represented by the class BidsFileDictionary and its extension
BidsTabularDictionary use a set combination of entities as the file key.

6.15. HED Python tools 153

HED Resources, Release 0.0.1

For a file name sub-001_ses-3_task-target_run-01_events.tsv, the tuple (‘sub’, ‘task’) gives a key of
sub-001_task-target, while the tuple (‘sub’, ‘ses’, ‘run) gives a key of sub-001_ses-3_run-01. The use of
dictionaries of file names with such keys makes it easier to associate related files in the BIDS naming structure.

Notice that specifying entities (‘sub’, ‘ses’, ‘run) gives the key sub-001_ses-3_run-01 for all three
files: sub-001_ses-3_task-target_run-01_events.tsv, sub-001_ses-3_task-target_run-01_eeg.set
and sub-001_ses-3_task-target_run-01_eeg.edf. Thus, the expected usage is to create a dictionary of files
of one modality.

Create a key-file dictionary for files ending in events.tsv in bids_root_path directory tree.

from hed.tools import FileDictionary
from hed.util import get_file_list

file_list = get_file_list(bids_root_path, extensions=[".set"], name_suffix="_eeg",
exclude_dirs=["code", "derivatives"])

file_dict = BidsFileDictionary(file_list, entities=('sub', 'ses', 'run))

In this example, the get_file_list filters the files of the appropriate type, while the BidsFileDictionary creates
a dictionary with keys such as sub-001_ses-3_run-01 and values that are BidsFile objects. BidsFile can hold
the file name of any BIDS file and keeps a parsed version of the file name.

A generic dictionary of filenames

Create a key-file dictionary for files ending in events.json in bids_root_path directory tree.

from hed.tools import FileDictionary
from hed.util import get_file_list

file_list = get_file_list(bids_root_path, extensions=[".json"], name_suffix="_events",
exclude_dirs=["code", "derivatives"])

file_dict = FileDictionary(file_list, name_indices=name_indices)

Keys are calculated from the filename using a name_indices tuple, which indicates the positions of the name-value
entity pairs in the BIDS file name to use.

The BIDS filename sub-001_ses-3_task-target_run-01_events.tsv has three name-value entity pairs
(sub-001, ses-3, task-target, and run-01) separated by underbars.

The tuple (0, 2) gives a key of sub-001_task-target, while the tuple (0, 3) gives a key of sub-001_run-01. Neither
of these choices uniquely identifies the file. The tuple (0, 1, 3) gives a unique key of sub-001_ses-3_run-01. The
tuple (0, 1, 2, 3) also works giving sub-001_ses-3_task-target_run-01.

If you choose the name_indices incorrectly, the keys for the event files will not be unique, and the notebook will
throw a HedFileError. If this happens, modify your name_indices key choice to include more entity pairs.

The Jupyter notebook go_nogo_01_initial_summary.ipynb illustrates using this dictionary in a larger context.

For example, to compare the events stored in a recording file and the events in the events.tsv file associated with that
recording, we might dump the recording events in files with the same name, but ending in events_temp.tsv. The
FileDictionary class allows us to create a keyed dictionary for each of these event files.

154 Chapter 6. History and Support

https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/jupyter_notebooks/dataset_specific_processing/go_nogo/go_nogo_01_initial_summary.ipynb

HED Resources, Release 0.0.1

6.15.3.3 Logging processing steps

Often event data files require considerable processing to assure internal consistency and compliance with the BIDS
specification. Once this processing is done and the files have been transformed, it can be difficult to understand the
relationship between the transformed files and the original data.

The HedLogger allows you to document processing steps associated with the dataset by identifying key as illustrated
in the following log file excerpt:

Example output from HED logger.

sub-001_run-01
Reordered BIDS columns as ['onset', 'duration', 'sample', 'trial_type',

→˓'response_time', 'stim_file', 'value', 'HED']
Dropped BIDS skip columns ['trial_type', 'value', 'response_time', 'stim_file',

→˓'HED']
Reordered EEG columns as ['sample_offset', 'event_code', 'cond_code', 'type',

→˓'latency', 'urevent', 'usertags']
Dropped EEG skip columns ['urevent', 'usertags', 'type']
Concatenated the BIDS and EEG event files for processing
Dropped the sample_offset and latency columns
Saved as _events_temp1.tsv

sub-002_run-01
Reordered BIDS columns as ['onset', 'duration', 'sample', 'trial_type',

→˓'response_time', 'stim_file', 'value', 'HED']
Dropped BIDS skip columns ['trial_type', 'value', 'response_time', 'stim_file',

→˓'HED']
Reordered EEG columns as ['sample_offset', 'event_code', 'cond_code', 'type',

→˓'latency', 'urevent', 'usertags']
Dropped EEG skip columns ['urevent', 'usertags', 'type']
Concatenated the BIDS and EEG event files for processing
. . .

Each of the lines following a key represents a print message to the logger.

The most common use for a logger is to create a file dictionary using make_file_dict and then to log each processing
step using the file’s key. This allows a processing step to be applied to all the relevant files in the dataset. After all the
processing is complete, the print_log method outputs the logged messages by key, thus showing all the processing
steps that hav been applied to each file as shown in the previous example.

Using the HED logger.

from hed.tools import HedLogger
status = HedLogger()
status.add(key, f"Concatenated the BIDS and EEG event files")

... after processing is complete output or save the log
status.print_log()

The HedLogger is used throughout the processing notebooks in this repository.

6.15. HED Python tools 155

HED Resources, Release 0.0.1

6.16 HED JavaScript tools

The JavaScript code for HED validation is in the validation directory of the hed-javascript repository located at
https://github.com/hed-standard/hed-javascript.

6.16.1 Javascript tool installation

You can install the validator using npm:

npm install hed-validator

6.16.2 Javascript package organization

This package contains two sub-packages.

hedValidator.validator validates HED strings and contains the functions:

buildSchema imports a HED schema and returns a JavaScript Promise object.
validateHedString validates a single HED string using the returned schema object.

hedValidator.converter converts HED strings between short and long forms and contains the following functions:

buildSchema behaves similarly to the buildSchema function in hedValidator.validator except that
it does not work with attributes.

convertHedStringToShort converts HED strings from long form to short form.

convertHedStringToLong converts HED strings from short form to long form.

6.16.3 Javascript programmatic interface

The programmatic interface to the HED JavaScript buildSchema must be modified to accommodate a base HED
schema and arbitrary library schemas. The BIDS validator will require additional changes to locate the relevant HED
schemas from the specification given by "HEDVersion" in dataset_description.json.

The programmatic interface is similar to the JSON specification of the proposed BIDS implementation except that the
"fileName" key has been replaced by a "path" key to emphasize that callers must replace filenames with full paths
before calling buildSchema.

Example: JSON passed to buildSchema.

{
"path": "/data/wonderful/code/mylocal.xml",
"libraries": {

"la": {
"libraryName": "libraryA",
"version": "1.0.2"

},
"lb": {

"libraryName": "libraryB",
"path": "/data/wonderful/code/HED_libraryB_0.5.3.xml"

}
(continues on next page)

156 Chapter 6. History and Support

https://github.com/hed-standard/hed-javascript

HED Resources, Release 0.0.1

(continued from previous page)

}
}

NOTE: This interface is proposed and is awaiting resolution of BIDS PR #820 on file passing to BIDS.

6.17 HED MATLAB tools

There are currently three types of support available for HED (Hierarchical Event Descriptors) supports in MATLAB:

• HED services in MATLAB - web services called from MATLAB scripts

• EEGLAB plug-in integration - EEGLAB plugins and other HED support

• Python HEDTools in MATLAB - explains how to call the HED python tools from within MATLAB.

HED services allow MATLAB programs to request the same services that are available through the browser at https:
//hedtools.ucsd.edu/hed.

6.17.1 HED services in MATLAB

HED RESTful services allow programs to make requests directly to the HED online tools available at https://hedtools.
ucsd.edu/hed or in a locally-deployed docker module. See HED-web for additional information on the deployment.

The runAllTests.m is a main script that runs all the example code and reports whether the code runs successfully. You
should start by running this script to make sure everything is working on your system, that you have Internet access,
and that the HED services are available.

This script also demonstrates how to call the individual test functions. Each test function takes a host URL as a
parameter and returns a list of errors. The individual test scripts illustrate how to call each type of available web
service.

Target MATLAB source Purpose
Overall runAllTests.m Harness for running all tests.
Overall testGetServices.m List available services.
Events testEventServices.m Validation, conversion, sidecar generation.
Events testEventSearchServices.m Search, assembly.
Schema in progress For schema library developers.
Sidecars testSidecarServices.m Validation, conversion, extraction, merging.
Spreadsheets testSpreadsheetServices.m Validation, conversion.
Strings testStringServices.m Validation, conversion.

6.17. HED MATLAB tools 157

https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed
https://hed-web.readthedocs.io/en/latest/index.html
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/runAllTests.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/runAllTests.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testGetServices.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testEventServices.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testEventSearchServices.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testSidecarServices.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testSpreadsheetServices.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testStringServices.m

HED Resources, Release 0.0.1

6.17.1.1 Overview of service requests

Calling HED services from MATLAB requires the following steps:

1. Set up a session:

1. Establish a session by requesting a CSRF token and a cookie.

2. Construct a header array using the token and the cookie.

2. Create a request structure.

3. Make a request using the MATLAB webwrite.

4. Decode the response returned from webwrite.

Usually, you will do the first step (the session setup) once at the beginning of your script to construct a fixed session
header that can be used in subsequent requests in your script.

6.17.1.2 Setting up a session from MATLAB

The goal of the session setup is to construct a header that can be used in subsequent web requests. The first step is to
call the getHostOptions.m. This function constructs the services URL from the host URL. The function also makes
a service request to obtain a CSRF token and a cookie. The function then constructs a header and calls the MATLAB
weboptions function to get an options object suitable for use with the MATLAB webwrite function use in all of our
examples.

Establish a session.

host = 'https://hedtools.ucsd.edu/hed';
[servicesUrl, options] = getHostOptions(host)

The host should be set to the URL of the webserver that you are using. The call to getHostOptions, only needs to be
done once at the beginning of your session. The servicesURL and the options can be used for all of your subsequent
requests.

The getHostOptions does all the setup for using the services. As indicated by the code below, all communication is
done in JSON. However, as demonstrated below, the MATLAB webwrite function takes a MATLAB struct as its
request parameter and internally converts to the format specified in the header before making the request.

The Timeout parameter indicates how many seconds MATLAB will wait for a response before returning as a failed
operation. The timeout value of 120 seconds is sufficient for most situations. However, but this can be adjusted
upward or downward to suit the user. The HeaderFields sets the parameters of HTTP request.

Source for getHostOptions.

function [servicesUrl, options] = getHostOptions(host)
csrfUrl = [host '/services'];
servicesUrl = [host '/services_submit'];
[cookie, csrftoken] = getSessionInfo(csrfUrl);
header = ["Content-Type" "application/json"; ...

"Accept" "application/json"; ...
"X-CSRFToken" csrftoken; "Cookie" cookie];

options = weboptions('MediaType', 'application/json', ...
'Timeout', 120, 'HeaderFields', header);

158 Chapter 6. History and Support

https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/getHostOptions.m

HED Resources, Release 0.0.1

In the following examples, we assume that getHostOptions has been called to retrieve servicesUrl and options
for use in the session.

6.17.1.3 Creating a request structure

The request structure is a MATLAB struct which must have a service field and can have an arbitrary number of
fields depending on which service is being requested.

The simplest service is get_services, which returns a string containing information about the available services.
This service requires no additional parameters.

Request a list of available HED web services.

request = struct('service', 'get_services');
response = webwrite(servicesUrl, request, options);
response = jsondecode(response);

The MATLAB webwrite returns a JSON structure as specified in the options. The MATLAB jsondecode function
returns a MATLAB struct whose format is explained below in Decoding a service response.

Except for get_services, all other services are of the form target_command where target is the primary type of data
acted on (events, schema, sidecar, spreadsheet, or string). The possible values for command depend on the value of
target. For example sidecar_validate requests that a JSON sidecar be validated.

The get_services command provides information about the HED services that are available and the parameters
required. The get_services entry for sidecar_validate is the following:

The get_services entry for sidecar_validate.

sidecar_validate:
Description: Validate a BIDS JSON sidecar (in string form) and return errors.
Parameters:

json_string
schema_string or schema_url or schema_version
check_for_warnings

Returns: A list of errors if any.

The Parameters section indicates the fields in addition to the service that are needed in the request structure. For
example, sidecar_validate requires a HED schema. One possibility is to read a schema into a string and provide
this information in schema_string. Another possibility is to provide a URL for the schema. The most-commonly
used option is to use schema_version to indicate one of the supported versions available in the hedxml directory of
the hed-specification repository on GitHub.

Create a request for the sidecar_validate web service.

jsonText = fileread('../../../datasets/eeg_ds003645s_hed/task-FacePerception_events.json
→˓');
request = struct('service', 'sidecar_validate', ...

'schema_version', '8.0.0', ...
(continues on next page)

6.17. HED MATLAB tools 159

https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-specification

HED Resources, Release 0.0.1

(continued from previous page)

'json_string', jsonText, ...
'check_for_warnings', 'on');

This example reads the JSON sidecar to be validated as a character array into the variable jsonText and makes a
request for validation using HED8.0.0.xml.

The request indicates that validation warnings as well as errors should be included in the response. If you wish to
exclude warnings, use off instead of on as the check_for_warnings field value.

The testSidecarServices.m function shows complete examples of the various HED services for JSON sidecars.

6.17.1.4 Making a service request

The HED services all use the MATLAB webwrite to make HED web service requests. The following call uses the
sidecar_validate request from the previous section.

Request the sidecar validation service.

response = webwrite(servicesUrl, request, options);
response = jsondecode(response);
outputReport(response, 'Example: validate a JSON sidecar');

The outputReport.m MATLAB script outputs the response in readable form with a user-provided table.

If the web server is down or times out during a request, the MATLAB web_write function throws an exception, and
the script terminates without setting the response.

If the connection completes successfully, the response will set. The next section explains the response structure in more
detail.

6.17.1.5 Decoding a service response

All HED web services return a response consisting of a JSON dictionary with 4 keys as summarized in this table.

Field name Meaning
service Name of the requested service.
results Results of the operation.
error_type Type of error if the service failed.
error_msg Explanation of the message if the service failed.

The jsondecode function translates the JSON dictionary into a MATLAB structure.

The error_type indicates whether the service request completed successfully and was able to get results. The
error_type does NOT indicate the nature of the results (for example whether a JSON sidecar was valid or not),
but rather whether the server was able to complete the request without raising an exception. A failure error_type is
highly unusual and indicates some type of unexpected internal web service error. Errors of this type should be reported
using the GitHub hed-python issues mechanism.

The results structure has the actual results of the service request.

160 Chapter 6. History and Support

https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/testSidecarServices.m
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/web_services/outputReport.m
https://github.com/hed-standard/hed-python/issues

HED Resources, Release 0.0.1

Field name Meaning
command Command executed in response to the service request.
command_target Type of data on which the command was executed.
data Data returned by the service (either processed result or a list of errors).
msg_category Success or warning depending on the result of processing the service.
msg Explanation of the output of the service.
output_display_name (Optional) File name for saving return data.
schema_version (Optional) Version of the HED schema used in the processing.

The results structure will always have command, command_target fields indicating what operation was performed
on what type of data.

The msg_category will be success or warning depending on whether there were errors. The contents of the data
field will contain different information depending on the msg_category. For example, if a sidecar had validation
errors, results.msg_category will be warning and the results.data value should be interpreted as a list of
errors. If the sidecar had no errors, results.data will be an empty string.

6.17.2 EEGLAB plug-in integration

EEGLAB is the most widely used EEG software environment for analysis of human electrophsyiological (and related)
data. EEGLAB combines graphical and command-line user interfaces, making it friendly for both beginners who may
who prefer a visual, and automated way of analyzing data as well as experts, who can easily customize, extend, and
automate the EEGLAB tool environment by writing new EEGLAB-compatible scripts and functions.

HED is fully integrated into EEGLAB via the HEDTools plug-in, allowing users to annotate their EEGLAB STUDY
and datasets with HED, as well as enabling HED-based data manipulation and processing.

6.17.2.1 Installing HEDTools

HEDTools EEGLAB plug-in can be installed using one of the following ways:

Method 1: EEGLAB Extension Manager:

Launch EEGLAB. From the main GUI select:

File –> Manage EEGLAB extension

The extension manager GUI will pop up.

From this GUI look for and select the plug-in HEDTools from the main window, then click into the Install/Update
button to install the plug-in.

Method 2: Download and unzip

Download the zip file with the content of the plug-in HEDTools either from HED Matlab EEGLAB plugins or from
the EEGLAB plug-ins summary page.

Unzip file into the folder ../eeglab/plugins and restart the eeglab function in a MATLAB session.

6.17. HED MATLAB tools 161

https://github.com/hed-standard/hed-matlab/blob/master/EEGLABPlugin
https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php

HED Resources, Release 0.0.1

6.17.2.2 Annotating datasets

We will start by adding HED annotations to the EEGLAB tutorial dataset.

After installing the HEDTools open the EEGLAB main window and load the dataset by selecting the menu item:

File –> Load existing dataset .

Selecting the tutorial dataset under your eeglab installation eeglab/sample_data/eeglab_data.set.

Read a description of the dataset and of its included event codes by selecting:

Edit –> About this dataset:

The description gives a general idea of the codes found in the event structure. Yet, inquisitive researchers interested in
the nature of the stimuli (e.g., color and exact location of the squares on the screen) would have to look up the referenced
paper for details.

Our goal in using HED tags is to describe the experimental events that are recorded in the EEG.event data structure in
sufficient detail that anyone using the dataset in the future will not need to find and read a separate, detailed description
of the dataset or study to understand the recorded experimental events. As demonstrated below, such annotation will
allow us to extract epochs using meaningful HED tags instead of the alpha-numeric codes often associated with shared
EEG data.

Launching EEGLAB HEDTools

To add and view HED tags for the dataset, from EEGLAB menu, select:

Edit –> Add/Edit event HED tags.

HEDTools will extract information from the EEG.event structure, automatically detecting the event structure fields and
their unique values.

The HEDTools ignore the fields the event structure fields .latency, .epoch, and .urevent.

A window will appear asking you to verify/select categorical fields:

Here both position and type are categorical fields. HEDTools automatically selects fields with less than 20 unique
values to be categorical, but the user can modify which values are chosen.

CTagger (for ‘Community Tagger’) is a graphical user interface (GUI) built to facilitate the process of adding HED
tags to recorded events in existing datasets. Clicking Continue brings up the CTagger interface:

162 Chapter 6. History and Support

HED Resources, Release 0.0.1

The CTagger GUI is organized using a split window strategy. The left window shows the items to be tagged, and the
right window shows the current HED tags associated with the selected item. The Show HED schema button brings up
a browser for the HED vocabulary.

Through the CTagger GUI, users can explore the HED schema, quickly look up and add tags (or tag groups) to the
desired event codes, and use import/export features to reuse tags on from other data recordings in the same study.

The process of tagging is simply choosing tags from the available vocabulary (using the HED schema browser) and
associating these tags with each event code.

Once familiar with HED and the vocabulary, most users just type the tags directly in the tag window shown on the
right.

CTagger is used as part of the HEDTools plug-in in this tutorial, but it can also be used as a standalone application.

Instructions on downloading and using the standalone version of CTagger, as well as step-by-step guide on how to add
HED annotation with CTagger, can be found at in Tagging with CTagger.

Tagging the events

A brief step-by-step guide to selecting tags can be found at HED annotation quickstart. The following shows example
annotations using the process suggested in the quickstart. we will import the annotation saved in the _events.json file
format. Download the file eeglab-tutorial_events.json then select:

File –> Import –> Import BIDS events.json file

to import it to CTagger. You can now review all the tags via:

File –> Review all tags

6.17. HED MATLAB tools 163

HED Resources, Release 0.0.1

Validation

The last step of the annotation process is to validate the HED annotations. Click on the Validate all button at the bottom
pane. A window will pop up showing validation results. If there are issues with the annotation, there will be a line for
each of the issues found.

Here is an example of validation log file with issues:

164 Chapter 6. History and Support

HED Resources, Release 0.0.1

If the annotation was correct, a message will appear confirming the validity:

Click Finish on the main CTagger window to end the annotation.

The tag review window will show up again for a final review and the option to save the annotation into an _events.json
file for distribution just as with the eeglab-tutorial_events.json. Hit Ok to continue after that.

A last window will pop up asking what you would like to overwrite the old dataset with the tagged one or save new
dataset as a separate file. Click Ok when you’re done.

6.17. HED MATLAB tools 165

HED Resources, Release 0.0.1

You just finished tagging! HEDTools generates the final HED string for each event by concatenating all tags associated
with the event values of that event (separated by commas). The final concatenated version is put the string in a new
field HED in EEG.event.

6.17.2.3 HED-based epoching

The EEGLAB pop_epoch function extracts data epochs that are time locked to specified event types. This function
allows you to epoch on one of a specified list of event types as defined by the EEG.event.type field of the EEG structure.

HEDTools provides a simple way for extracting data epochs from annotated datasets using a much richer set of condi-
tions. To use HED epoching, you must have annotated the EEG dataset.

If the dataset is not tagged, please refer to Annotating datasets on how to tag a dataset.

Start by choosing the menu option: Tools –> Extract epochs by tags:

This will bring up a window to specify the options for extracting data epochs:

The pop_epochhed menu is almost identical to the EEGLAB pop_epoch menu with the exceptions of the first input
field (Time-locking HED tag(s)) and the second input field (Exclusive HED tag(s)).

Instead of passing in or selecting from a group of unique event types, the user passes in a comma separated list of HED
tags. For each event all HED tags in this list must be found for a data epoch to be generated.

Clicking the adjacent button (with the label . . .) will open a search tool to help you select HED tags retrieved from the
dataset.

When you type something in the search bar, the dialog displays a list below containing possible matches. Pressing the
“up” and “down” arrows on the keyboard while the cursor is in the search bar moves to the next or previous tag in the
list.

Pressing “Enter” selects the current tag in the list and adds the tag to the search bar. You can continue search and add
tags after adding a comma after each tag. When done, click the Ok button to return to the main epoching menu.

166 Chapter 6. History and Support

HED Resources, Release 0.0.1

6.17.3 Python HEDTools in MATLAB

You can run functions from the Python hedtools library directly in MATLAB versions R2019a or later. With these
tools you can incorporate validation, summary, search, factorization, and other HED processing directly into your
MATLAB processing scripts without reimplementing these operations in MATLAB.

Note: For your reference, the source for hedtools is the hed-python GitHub repository. The code is fully open-
source with an MIT license. The actual API documentation is available here, but the tutorials and tool documentation
for hedtools on HED Resources provides more examples of use.

6.17.3.1 Getting started

The hedtools library requires a Python version >= 3.7. In order to call functions from this library in MATLAB, you
must be running MATLAB version >= R2019a and have a compatible version of Python installed on your machine.

The most difficult part of the process for users who are unfamiliar with Python is getting Python connected to MAT-
LAB. Once that is done, many of the standard hedtools functions have MATLAB wrapper functions, which take
MATLAB variables as arguments and return MATLAB variables. Thus, once the setup is done, you don’t have to learn
any additional Python syntax to use the tools. You should only have to do this setup once, since MATLAB retains the
setup information from session to session.

Steps for setting up Python HEDtools for MATLAB.

Step 1: Find Python. If yes, skip to Step 3.

Step 2: Install Python if needed .

Step 3: Connect Python to MATLAB. If already connected, skip to Step 4.

Step 4: Install HEDtools

Step 1: Find Python

Follow these steps until you find a Python executable that is version 3.7 or greater. If you can’t locate one, you will
need to install it.

Does MATLAB already have a good version of Python you can use?

In your MATLAB command window execute the following function:

pyenv

The following example response shows that MATLAB is using Python version 3.9 with executable located at C:\
Program Files\Python39\pythonw.exe.

PythonEnvironment with properties:

Version: "3.9"
Executable: "C:\Program Files\Python39\pythonw.exe"

Library: "C:\Program Files\Python39\python39.dll"
Home: "C:\Program Files\Python39"

Status: NotLoaded
ExecutionMode: InProcess

6.17. HED MATLAB tools 167

https://github.com/hed-standard/hed-python
https://hed-python.readthedocs.io/en/latest/api.html
https://www.hed-resources.org/en/latest/index.html
https://www.mathworks.com/support/requirements/python-compatibility.html
https://github.com/hed-standard/hed-examples/tree/main/hedcode/matlab_scripts/hedtools_wrappers

HED Resources, Release 0.0.1

If MATLAB has already knows about a suitable Python version that is at least 3.7, you are ready to go to Step 4: Install
HEDTools. Keep track of the location of the Python executable.

If the pyenv did not indicate a suitable Python version, you will need to find the Python on your system (if there is
one), or install your own.

There are several likely places to look for Python on your system.

For Linux users:

Likely places for system-space installation are /bin, /local/bin, /usr/bin, /usr/local/bin, or /
opt/bin. User-space installations are usually your home directory in a subdirectory such as ~/bin or
~/.local/bin.

For Windows users:

Likely places for system-space installation are C:\, C:\Python, or C:\Program Files. User-space
installations default to your personal account in C:\Users\yourname\AppData\Local\Programs\
Python\python39 where yourname is your Windows account name and python39 will be the particular
version (in this case Python 3.9).

If you don’t have any success finding a Python executable, you will need to install Python as described in Step 2: Install
Python if needed.

Otherwise, you can skip to Step 3:Connect Python to MATLAB.

Warning: You need to keep track of the path to your Python executable for Step 3.

Step 2: Install Python if needed

If you don’t have Python on your system, you will need to install it. Go to Python downloads and pick the correct
installer for your operating system and version.

Depending on your OS and the installer options you selected, Python may be installed in your user space or in system
space for all users.

• You should keep track of the directory that Python was installed in.

• You may want to add the location of the Python executable to your PATH. (Most installers give you that option
as part of the installation.)

Step 3: Connect Python to Matlab

Setting the Python version uses the MATLAB pyenv function with the 'Version' argument as illustrated by the
following example.

Example MATLAB function call connect MATLAB to Python.

>> pyenv('Version', 'C:\Program Files\Python39\python.exe')

Be sure to substitute the path of the Python that you have found. Notice that the executable listed in Step 1 was
pythonw.exe, but we have used python.exe here to indicate the command line version.

Use the MATLAB pyenv function again without arguments to check that your installation is as expected.

168 Chapter 6. History and Support

https://www.python.org/downloads/

HED Resources, Release 0.0.1

Example response for pyenv all with no argments after setting environment.

PythonEnvironment with properties:

Version: "3.9"
Executable: "C:\Program Files\Python39\python.exe"

Library: "C:\Program Files\Python39\python39.dll"
Home: "C:\Program Files\Python39"

Status: NotLoaded
ExecutionMode: InProcess

Step 4: Install HEDTools

The general-purpose package manager for Python is called pip. By default, pip retrieves packages to be installed from
the PyPI package repository. You will need to use the version of pip that corresponds to the version of Python that is
connected to MATLAB. This may not be the default pip used from the command line.

Command to install hedtools in MATLAB.

To install the latest released version of hedtools type a pip command such as the following in your MATLAB com-
mand window.

system('"C:\Program Files\Python39\Scripts\pip" install hedtools')

Use the full path of the pip associated with the Python that you are using with MATLAB

Giving the full path to pip corresponding to the Python installation that MATLAB is using ensures that MATLAB
knows about HEDtools. (The version of MATLAB that Python is using may not be the same as the Python in the
system PATH.)

Also watch the resulting messages in the command window to make sure that HEDtools was successfully installed. In
the case of the above example, the Python being used is in system space, which requires administrator privileges.

The first line of the output was:

Defaulting to user installation because normal site-packages is not writeable

On Windows these packages will be found in a site-packages directory such as:

`C:\Users\username\AppData\Roaming\Python\Python39\site-packages`

On Linux these packages might be found in directory such as:

/home/username/.local/lib/python3.9/site-packages/

Warning: If your system had a Python 2 installed at some point, your Python 3 executable might be named
python3 rather than python.

Similarly, the pip package manager might be named pip3 instead of pip.

The following MATLAB statement can be used to test that everything was installed correctly.

6.17. HED MATLAB tools 169

https://pypi.org

HED Resources, Release 0.0.1

Test that everything is installed.

pyrun("from hed import _version as vr; print(f'Using HEDTOOLS version: {str(vr.get_
→˓versions())}')")

If everything installed correctly, the output will be something like

Using HEDTOOLS version: {'date': '2022-06-20T14:40:24-0500', 'dirty': False, 'error':␣
→˓None, 'full-revisionid': 'c4ecd1834cd31a05ebad3e97dc57e537550da044', 'version': '0.1.0
→˓'}

6.17.3.2 MATLAB wrappers for HEDTools

The hedtools_wrappers directory in the hed-examples GitHub repository contains MATLAB wrapper functions for
calling various commonly used HED tools.

Direct calls to HEDTools

Wrapper functions are provided to some of the more commonly used functions in the HEDTools suite.

The following example shows the MATLAB wrapper function validateHedInBids.m, which contains the underlying
calls to HEDTools Python BIDs validation.

A MATLAB wrapper function for validating HED in a BIDS dataset.

function issueString = validateHedInBids(dataPath)
py.importlib.import_module('hed');
bids = py.hed.tools.BidsDataset(dataPath);
issues = bids.validate();
issueString = string(py.hed.get_printable_issue_string(issues));

Example MATLAB calling code for this function:

dataPath = 'H:\datasets\eeg_ds003645s_hed';
issueString = validateHedInBids(dataPath);
if isempty(issueString)

fprintf('Dataset %s has no HED validation errors\n', dataPath);
else

fprintf('Validation errors for dataset %s:\n%s\n', dataPath, issueString);
end

In above example assumes that the BIDS dataset was located at H:\datasets\eeg_ds003645s_hed. We tested it
with the eeg_ds003645s_hed available on GitHub. You can download and use this test data or set dataPath to the
root directory of your own dataset.

170 Chapter 6. History and Support

https://github.com/hed-standard/hed-examples/tree/main/hedcode/matlab_scripts/hedtools_wrappers
https://github.com/hed-standard/hed-examples
https://raw.githubusercontent.com/hed-standard/hed-examples/main/hedcode/matlab_scripts/hedtools_wrappers/validateHedInBids.m
https://github.com/hed-standard/hed-examples/tree/main/datasets/eeg_ds003645s_hed

HED Resources, Release 0.0.1

Calls to HED remodeling tools

Many of the most useful HEDTools functions are packaged in the HED remodeling tool suite. These tools allow
operations such as creating summaries, validating the dataset, and transforming event files to be run on an entire dataset.

The following example illustrates a call that creates a summary of the experimental conditions for a HED-tagged dataset.

A MATLAB wrapper function for a remodeling operation to create a summary.

function runRemodel(remodel_args)
py.importlib.import_module('hed');
py.hed.tools.remodeling.cli.run_remodel.main(remodel_args);

Example MATLAB calling code for this function:

dataPath = 'G:\ds003645';
remodelFile = 'G:\summarize_hed_types_rmdl.json';
remodel_args = {dataPath, remodelFile, '-b', '-x', 'stimuli', 'derivatives'};
runRemodel(remodel_args);

The command line arguments to the various remodeling functions are given in a cell array, rather than a regular MAT-
LAB array. For the remodeling operations, first and second operation must be the dataset root directory and the remod-
eling file name, respectively. In this example, dataset ds003645 has been downloaded from openNeuro to the G:\
drive. The remodeling file used in this example can be found at See File remodeling quickstart and File remodeling
tools for additional information. The wrapper functions are available on GitHub in the hedtools_wrappers directory.

6.17.3.3 MATLAB functions for Python

The following table lists the relevant MATLAB functions that are available. You should refer to the help facility for
your version of MATLAB to get the details of what is supported for your version of MATLAB.

MATLAB com-
mand

Purpose

pyenv Setup your Python environment in MATLAB.Without arguments outputs information about your
current Python environment.

pyrun Run a Python statement and return results.
pyargs A recent addition for more advanced argument handling.
pyrunfile Run a Python script from MATLAB.

The MATLAB matlab.exception.PyException captures error information generated during Python execution.

6.18 HED schemas

6.18.1 HED schema basics

HED annotations consist of unordered comma separated lists of HED tags. The annotations may include parentheses to
group terms that belong together. For example in the HED annotation Red, Triangle, Blue, Square, cannot use ordering
to determine which tags belong together. To indicate a red triangle and a blue square, you must use parentheses: (Red,
Triangle), (Blue, Square).

6.18. HED schemas 171

https://openneuro.org
https://github.com/hed-standard/hed-examples/tree/develop/hedcode/matlab_scripts/hedtools_wrappers

HED Resources, Release 0.0.1

The HED tags used to annotate data come from a controlled vocabulary called a HED schema. A HED schema consists
of a series of top-level tags representing general categories in this vocabulary. Each top-level tag is the root of a tree
containing tags falling into that category.

Each child tag in a HED schema is considered to be a special type of its ancestors. Consider the tag Square, which has
a full schema path Item/Object/Geometric-object/2D-shape/Rectangle/Square. Square is-a type of Rectangle, which
is-a type of 2D-shape, etc.

The strict requirement of child is-a type of any ancestor means that when downstream tools search for 2D-shape, the
search will return tag strings containing Square as well as those containing the tags Rectangle and 2D-shape.

Rules for the HED schema vocabulary and for HED-compliant tools can be found in the HED Specification.

Additional details about particular schemas can be found in the HED schemas documentation page.

6.18.1.1 Tag forms

When you tag, you need only use the tag node name (e.g, Square). HED-compliant tools can convert between this
“short-form” and the complete path or “long-form” (e.g. /Item/Object/Geometric-object/2D-shape/Rectangle/Square)
when needed for search, summarization, or other processing.

6.18.1.2 Types of schemas

The HED standard schema consists of a terms that are likely to be of use in all experiments, while library schemas
capture the terms that are important for annotations in a specialized areas. You may use terms from as many schemas
as you wish. However, if you use more than one schema, terms from the additional schemas must be prefixed by local
namespace designators to indicate which schemas the tags came from. A namespace designator is the form xx: where
xx is a user-chosen string of alphabetic characters.

The following diagram shows a representation of a standard schema (blue nodes) used in conjunction with the SCORE
1.0.0 library schema (green nodes). Tags from the standard schema, such as Data-feature appear without the prefix.
The remaining tags, which come from the SCORE library, appear with the user-defined sc: namespace prefix in the
annotation.

.

Starting with HED schema version 8.2.0, HED supports partnered schemas, which are library schemas that are merged
with a standard schema. Partnered schemas allow schema designers to include library tags that are elaborations of tags
in the standard schema in addition to other specialized tags as shown in the following diagram:

.

172 Chapter 6. History and Support

https://hed-specification.readthedocs.io/en/latest/
https://hed-schemas.readthedocs.io/en/latest/index.html

HED Resources, Release 0.0.1

SCORE version 1.1.0 will be distributed as a partnered schema. Annotations from a partnered schema can include tags
from both the library schema and its partner without prefixes.

6.18.2 Viewing schemas

All versions of the HED schemas are located in the GitHub hed-schemas and can be best-viewed using the HED
schema browser.

6.18.3 Available schemas

6.18.3.1 The standard schema

The HED standard schema contains the basic vocabulary for annotating experiments. These are terms that are likely to
be useful in all types of annotations. The HED standard schema source is located in the standard_schema directory
of the hed-schemas GitHub repository.

Format Type Use
XML Raw Accessed by tools for validation and analysis.

Formatted Readable display.

Mediawiki Raw Edited to create a new schema.
Formatted Readable display for editing.

Prerelease Directory Working directory for developing the prerelease.

6.18.3.2 The SCORE library

The HED SCORE library is an implementation of the SCORE standard for clinical annotation of EEG by neurologists.
For more information and the latest references see HED SCORE schema.

Format Type Use
XML Raw Accessed by tools for validation and analysis.

Formatted Readable display.

Mediawiki Raw Edited to create a new schema.
Formatted Readable display for editing.

Prerelease Directory Working directory for developing the prerelease.

6.18.3.3 The LISA library

The HED LISA library represents a vocabulary for annotating linguistic stimuli in language and other types of experi-
ments. For more information and the latest references see HED LISA schema. The LISA library is under development
and is only available in prerelease format.

6.18. HED schemas 173

https://github.com/hed-standard/hed-schemas
https://www.hedtags.org/display_hed.html
https://www.hedtags.org/display_hed.html
https://github.com/hed-standard/hed-schemas/tree/main/standard_schema
https://github.com/hed-standard/hed-schemas
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/standard_schema/hedxml/HED8.2.0.xml
https://github.com/hed-standard/hed-schemas/blob/main/standard_schema/hedxml/HED8.2.0.xml
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/standard_schema/hedwiki/HED8.1.0.mediawiki
https://github.com/hed-standard/hed-schemas/blob/main/standard_schema/hedwiki/HED8.1.0.mediawiki
https://github.com/hed-standard/hed-schemas/tree/main/library_schemas/score/prerelease
https://hed-schemas.readthedocs.io/en/latest/hed_lisa_schema.html
https://hed-schemas.readthedocs.io/en/latest/hed_score_schema.html
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/score/hedxml/HED_score_1.0.0.xml
https://github.com/hed-standard/hed-schemas/blob/main/library_schemas/score/hedxml/HED_score_1.0.0.xml
https://raw.githubusercontent.com/hed-standard/hed-schemas/main/library_schemas/score/hedwiki/HED_score_1.0.0.mediawiki
https://github.com/hed-standard/hed-schemas/blob/main/library_schemas/score/hedwiki/HED_score_1.0.0.mediawiki
https://github.com/hed-standard/hed-schemas/tree/main/library_schemas/score/prerelease
https://hed-schemas.readthedocs.io/en/latest/hed_lisa_schema.html

HED Resources, Release 0.0.1

Format Type Use
XML Raw Accessed by tools for validation and analysis.

[Formatted] Readable display.

Mediawiki [Raw] Edited to create a new schema.
[Formatted] Readable display for editing.

Prerelease Directory Working directory for developing the prerelease.

6.19 HED test datasets

The hed-examples repository contains a set of HED-annotated datasets in BIDS-compatible format. These datasets
can be useful for:

1. Writing lightweight software tests.

2. Serving as examples of how to incorporate HED into BIDS-structured data.

The datasets have empty raw data files. However, some data headers containing the metadata are still intact.

Datasets that are derived from datasets on OpenNeuro are identified by their OpenNeuro accession number plus ‘s’
plus a modifier. Datasets focused on particular a particular modality may have the modality prepended to the name.
For example, eeg_ds003645s identifies a reduced dataset derived the EEG data in OpenNeuro dataset ds003645. The
suffix modifier indicates what this dataset is designed to test.

Dataset Description OpenNeuro
eeg_ds002893s_hed_attention_shift Shift between auditory and visual modalities. ds002893
eeg_ds003645s_hed Short-form tags with definitions. ds003645
eeg_ds003645s_hed_column Some events.tsv files contain a HED column.

eeg_ds003645s_hed_inheritance Multiple sidecars with inheritance.

eeg_ds003645s_hed_library Multiple HED library schemas.

eeg_ds003645s_hed_longform Long-form with definitions.

eeg_ds004105s_hed_longform BCIT auditory cueing ds004105
eeg_ds004106s_hed_longform BCIT advanced guard duty ds004106
eeg_ds004117s_hed_sternberg Sternberg working memory task ds004117
fmri_ds002790s_hed_aomic Annotation with single column. ds002790
fmri_soccer21_hed Annotation with single column.

174 Chapter 6. History and Support

https://github.com/hed-standard/hed-schemas/tree/main/library_schemas/lisa/prerelease
https://github.com/hed-standard/hed-examples
https://bids.neuroimaging.io/
https://openneuro.org
https://openneuro.org/datasets/ds002893
https://openneuro.org/datasets/ds003645
https://openneuro.org/datasets/ds004105
https://openneuro.org/datasets/ds004106
https://openneuro.org/datasets/ds004117
https://openneuro.org/datasets/ds002790

HED Resources, Release 0.0.1

6.19.1 eeg_ds002893s_hed

This dataset includes rapid shifts in instructed attention between visual and auditory modalities. The dataset is men-
tioned as an example in the OHBM 2022 tutorial Annotating the timeline of neuroimaging time series data using
Hierarchical Event Descriptors.

6.19.2 eeg_ds003645s_hed

This dataset was originally released as multi-modal dataset ds000117 by Daniel Wakeman and Richard Henson. The
dataset events in ds003645 have been reorganized from the original and additional events added from the experimental
logs. The dataset includes MEEG and behavioral data. HED tags have been added.

The dataset is used as a HED case study in:

Robbins, K., Truong, D., Appelhoff, S., Delorme, A., & Makeig, S. (2021).
Capturing the nature of events and event context using Hierarchical Event Descriptors (HED).
Neuroimage 2021 Dec 15;245:118766. doi: 10.1016/j.neuroimage.2021.118766. Epub 2021 Nov 27.
https://www.sciencedirect.com/science/article/pii/S1053811921010387?via%3Dihub.

6.19.3 eeg_ds003645s_hed_column

This is a modification of ds003645s_hed where some events.tsv files contain a HED column.

6.19.4 eeg_ds003645s_hed_inheritance

This is a modification of ds003645s_hed where multiple sidecars containing HED tags are included to test that HED
tools correctly handle BIDS inheritance rules.

6.19.5 eeg_ds003645s_hed_library

This dataset is designed to test the HED library schema facility. It uses HED 8.0.0 as a base schema and as the “test”
library schema. In addition, this dataset uses the SCORE library version 1.0.0 as a library schema.

The schemas are specified in the dataset_description.json file.

6.19.6 eeg_ds003645s_hed_longform

This is a modification of ds003645s_hed where the HED tags include a mix of tags in long and short forms to test that
tools work with either long-form or short-form HED tags.

6.19.7 eeg_ds004105s_hed

Subjects in the Auditory Cueing study performed a long-duration simulated driving task with perturbations and audio
stimuli in a visually sparse environment. The dataset is part of a collection of 10 datasets from the BCIT program
designed to test EEG mega-analysis.

6.19. HED test datasets 175

https://www.youtube.com/playlist?list=PLeII6cRFsP6L5S6icwRrJp0DHkhOHtbp-
https://www.youtube.com/playlist?list=PLeII6cRFsP6L5S6icwRrJp0DHkhOHtbp-
https://openneuro.org/datasets/ds000117
https://openneuro.org/datasets/ds003645
https://www.sciencedirect.com/science/article/pii/S1053811921010387?via%3Dihub

HED Resources, Release 0.0.1

6.19.8 eeg_ds004106s_hed

BCIT Advanced Guard Duty study was designed to measure sustained vigilance in realistic settings by having subjects
verify information on replica ID badges. The dataset is part of a collection of 10 datasets from the BCIT program
designed to test EEG mega-analysis.

6.19.9 eeg_ds004117s_hed_sternberg

Sternberg working memory dataset, described in Onton et al. 2005, is used in a number of HED case studies including
the OHBM 2022 tutorial Annotating the timeline of neuroimaging time series data using Hierarchical Event
Descriptors and the book chapter 2.3 End-to-end processing of M/EEG data with BIDS, HED, and EEGLAB by
Thruong et al. in Methods for analyzing large neuroimaging datasets edited by Whelan and Lemaitre.

The study was also selected for replication in the EEGManyLabs initiative.

6.19.10 fmri_ds002790s_hed_aomic

This dataset is part of the Amsterdam OpenMRI Collection (AOMIC).

The dataset is used as a case study for the book chapter 2.4 Actionable event annotation and analysis in fMRI: A
practical guide to event handling by Denissen et al. in Methods for analyzing large neuroimaging datasets edited
by Whelan and Lemaitre.

6.19.11 fmri_soccer21_hed

This dataset is designed to illustrate a basic FMRI pipeline. The dataset is used as a case study for the book chapter
2.4 Actionable event annotation and analysis in fMRI: A practical guide to event handling by Denissen et al. in
Methods for analyzing large neuroimaging datasets edited by Whelan and Lemaitre.

6.19.12 BIDS validation

For general information on the bids-validator, including installation, configuration, and usage, see the bids-
validator README file.

Example: The following command validates the eeg_ds003645s_hed dataset:

bids-validator eeg_ds003645s_hed --config.ignore=99

This example assumes that npm and the bids-validator npm package have been installed on the local machine.
The command is run from the directory above the dataset root directory. The --config.ignore=99 flag tells the
bids-validator to ignore empty data files rather than to report the empty file error.

For additional information on BIDS validation, see the bids-examples.

176 Chapter 6. History and Support

https://pubmed.ncbi.nlm.nih.gov/15927487/
https://www.youtube.com/playlist?list=PLeII6cRFsP6L5S6icwRrJp0DHkhOHtbp-
https://www.youtube.com/playlist?list=PLeII6cRFsP6L5S6icwRrJp0DHkhOHtbp-
https://osf.io/8brgv/
https://osf.io/d9r3x/
https://www.sciencedirect.com/science/article/pii/S0010945221001106
https://nilab-uva.github.io/AOMIC.github.io/
https://osf.io/93km8/
https://osf.io/93km8/
https://osf.io/d9r3x/
https://osf.io/93km8/
https://osf.io/d9r3x/
https://github.com/bids-standard/bids-validator#quickstart
https://github.com/bids-standard/bids-validator#quickstart
https://github.com/bids-standard/bids-examples#readme

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• search

177

	What is HED?
	How is HED used?
	HED and BIDS
	HED Tools
	Where to begin?
	History and Support
	Introduction to HED
	Brief history of HED
	Goals of HED
	A basic HED annotation
	How to get started

	What’s new?
	How do you use HED?
	As an experimenter
	Planning and running an experiment
	Event acquisition
	Logs to event files

	Post-processing the event data

	As a data annotator
	Standardizing the format
	Learning about BIDS
	Learning about HED
	Integrating HED in BIDS

	Adding HED annotations
	Viewing available tags
	Basic annotation strategies
	More advanced annotations

	Checking correctness
	Validating HED annotations
	Checking for consistency

	As a data analyst
	Understanding the data
	Preparing the data
	Analyzing the data
	Factor vectors and selection
	HED analysis in EEGLAB
	HED support in other tools

	As a tool developer
	Integration with existing tools
	The HED code base
	The HED python code base
	The HED JavaScript code base
	The HED MATLAB code base
	Web tools and REST services

	Future development plans

	As a schema builder
	Viewing available schemas
	Improving an existing schema
	Creating a new library schema
	Private vocabularies and extensions

	BIDS annotation quickstart
	How HED works in BIDS
	BIDS event files
	JSON event sidecars

	Create a JSON template
	Step 1: Select generate JSON
	Step 2: Upload an events file.
	Step 3: Select columns to annotate
	Step 4: Download the template.
	Step 5: Complete the annotation.

	Spreadsheet templates
	Step 1: Select extract HED spreadsheet
	Step 2: Upload a sidecar and extract.
	Step 3: Edit the spreadsheet
	Step 4: Merge the spreadsheet

	HED annotation quickstart
	What is HED annotation?
	A recipe for simple annotation

	HED validation guide
	What is HED validation?
	Types of errors
	Available validators
	Python validator
	JavaScript validator
	MATLAB support

	Validation strategies
	Validation in BIDS
	Specifying the HED version
	BIDS online validator

	HED online validation
	Validation for MATLAB users
	Direct access to services
	Access through EEGLAB
	Access through Fieldtrip

	Validation for Python users
	Jupyter notebooks for validation
	Remodeling validation summaries

	HED search guide
	HED search basics
	Calling syntax
	Single tag queries
	Single-term search
	Quoted-tag search
	Tag-path with slash
	Tag-prefix with wildcard

	Logical queries
	Group queries

	Where can HED search be used?

	HED summary guide
	Column value summary
	HED tag summary
	Experimental design summary

	HED conditions and design matrices
	HED annotations for conditions
	Direct condition variables
	Defined condition variables
	Direct vs defined approaches
	Column vs row annotations

	Experimental design concepts
	Design matrices and factor variables
	Types of condition encoding

	File remodeling quickstart
	What is remodeling?
	The remodeling process
	JSON remodeling files
	Basic remodel operation syntax
	Applying multiple remodel operations
	More complex remodeling
	Remodeling file locations

	Using the remodeling tools
	Online tools for debugging
	The command-line interface
	Jupyter notebooks for remodeling

	HED schema developer’s guide
	Setting up for schema development
	Design principles for schema
	Defining a schema
	Schema namespaces
	Attributes and classes
	Required sections
	Relation to base schema
	Schema properties
	Unit classes
	Value classes
	Schema attributes
	Syntax checking
	Procedure for updating a schema.
	Proposing changes

	HED schema details
	Further documentation

	HED online tools
	Browser-based access
	Events files
	Validate an events file
	Assemble annotations
	Generate sidecar template
	Execute remodel script

	Sidecar files
	Validate a sidecar
	Convert sidecar to long
	Convert sidecar to short
	Extract spreadsheet from sidecar
	Merge a spreadsheet with a sidecar

	Spreadsheet files
	Validate a spreadsheet
	Convert spreadsheet to long
	Convert spreadsheet to short

	String online tools
	Validate a HED string
	Convert a HED string to long
	Convert HED string to short

	Schema online tools
	Validate a HED schema
	Convert a HED schema

	HED RESTful services
	Service setup
	Request format
	Service responses

	CTagger GUI tagging tool
	CTAGGER installation
	CTAGGER standalone installation
	Step 1:Check to see that you have Java installed.
	Step 2: Download CTagger.jar.
	Step 3: Double-click on CTagger.jar to run.

	CTAGGER in EEGLAB

	Loading BIDS event files
	Adding HED annotation
	Validating your annotation

	File remodeling tools
	Overview of remodeling
	Transformation operations
	Summarization operations
	Available operations

	Installing the remodel tools
	Remodel command-line interface
	Calling remodel tools
	Remodel command-line arguments
	Positional arguments
	Named arguments

	Remodel scripts
	Backing up files
	Remodeling files
	Restoring files

	Remodel with HED
	Extracting HED information from BIDS
	Directly specifying HED information

	Remodel error handling
	Errors in the remodel file
	Execution-time remodel errors

	Remodel sample files
	Sample remodel file
	Sample remodel event file
	Sample remodel sidecar file

	Remodel transformations
	Factor column
	Factor column parameters
	Factor column example

	Factor HED tags
	Factor HED tags parameters
	Factor HED tags example

	Factor HED type
	Factor HED type parameters
	Factor HED type example

	Merge consecutive
	Merge consecutive parameters
	Merge consecutive example

	Remap columns
	Remap columns parameters
	Remap columns example

	Remove columns
	Remove columns parameters
	Remove columns example

	Remove rows
	Remove rows parameters
	Remove rows example

	Rename columns
	Rename columns parameters
	Rename columns example

	Reorder columns
	Reorder columns parameters
	Reorder columns example

	Split rows
	Split rows parameters
	Split rows example

	Remodel summarizations
	Summarize column names
	Summarize column names parameters
	Summarize column names example

	Summarize column values
	Summarize column values parameters
	Summarize column values example

	Summarize definitions
	Summarize definitions parameters
	Summarize definitions example

	Summarize HED tags
	Summarize HED tags parameters
	Summarize HED tags example

	Summarize HED type
	Summarize HED type parameters
	Summarize HED type example

	Summarize HED validation
	Summarize HED validation parameters
	Summarize HED validation example

	Summarize sidecar from events
	Summarize sidecar from events parameters
	Summarize sidecar from events example

	Remodel implementation
	The PARAMS dictionary
	Operation class constructor
	The do_op implementation
	The do_op for summarization
	Additional requirements for summarization

	HED Python tools
	Jupyter notebooks for HED in BIDS
	Summarize BIDS event files
	Extract a JSON sidecar template
	JSON sidecar to spreadsheet
	Validate HED in a BIDS dataset

	Jupyter notebooks for data curation
	Consistency of BIDS event files

	Calling HED tools
	Getting a list of files
	Dictionaries of filenames
	BIDS-specific dictionaries of files
	BIDS file names and keys

	A generic dictionary of filenames

	Logging processing steps

	HED JavaScript tools
	Javascript tool installation
	Javascript package organization
	Javascript programmatic interface

	HED MATLAB tools
	HED services in MATLAB
	Overview of service requests
	Setting up a session from MATLAB
	Creating a request structure
	Making a service request
	Decoding a service response

	EEGLAB plug-in integration
	Installing HEDTools
	Method 1: EEGLAB Extension Manager:
	Method 2: Download and unzip

	Annotating datasets
	Launching EEGLAB HEDTools
	Tagging the events
	Validation

	HED-based epoching

	Python HEDTools in MATLAB
	Getting started
	Step 1: Find Python
	Step 2: Install Python if needed
	Step 3: Connect Python to Matlab
	Step 4: Install HEDTools

	MATLAB wrappers for HEDTools
	Direct calls to HEDTools
	Calls to HED remodeling tools

	MATLAB functions for Python

	HED schemas
	HED schema basics
	Tag forms
	Types of schemas

	Viewing schemas
	Available schemas
	The standard schema
	The SCORE library
	The LISA library

	HED test datasets
	eeg_ds002893s_hed
	eeg_ds003645s_hed
	eeg_ds003645s_hed_column
	eeg_ds003645s_hed_inheritance
	eeg_ds003645s_hed_library
	eeg_ds003645s_hed_longform
	eeg_ds004105s_hed
	eeg_ds004106s_hed
	eeg_ds004117s_hed_sternberg
	fmri_ds002790s_hed_aomic
	fmri_soccer21_hed
	BIDS validation

	Indices and tables

